@article{haribal_wang_dudek_paulus_turk_gupta_li_2019, title={Modified Ceria for "Low-Temperature" CO2 Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat}, volume={9}, ISSN={["1614-6840"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85074008887&partnerID=MN8TOARS}, DOI={10.1002/aenm.201901963}, abstractNote={Efficient CO2 utilization is key to limit global climate change. Carbon monoxide, which is a crucial feedstock for chemical synthesis, can be produced by splitting CO2. However, existing thermochemical routes are energy intensive requiring high operating temperatures. A hybrid redox process (HRP) involving CO2-to-CO conversion using a lattice oxygen-deprived redox catalyst at relatively low temperatures (<700 °C) is reported. The lattice oxygen of the redox catalyst, restored during CO2-splitting, is subsequently used to convert methane to syngas. Operated at temperatures significantly lower than a number of industrial waste heat sources, this cyclic redox process allows for efficient waste heat-utilization to convert CO2. To enable the low temperature operation, lanthanum modified ceria (1:1 Ce:La) promoted by rhodium (0.5 wt%) is reported as an effective redox catalyst. Near-complete CO2 conversion with a syngas yield of up to 83% at low temperatures is achieved using Rh-promoted LaCeO4−x. While La improves low-temperature bulk redox properties of ceria, Rh considerably enhances the surface catalytic properties for methane activation. Density functional theory calculations further illustrate the underlying functions of La-substitution. The highly effective redox catalyst and HRP scheme provide a potentially attractive route for chemical production using CO2, industrial waste heat, and methane, with appreciably lowered CO2 emissions.}, number={41}, journal={ADVANCED ENERGY MATERIALS}, publisher={Wiley}, author={Haribal, Vasudev Pralhad and Wang, Xijun and Dudek, Ryan and Paulus, Courtney and Turk, Brian and Gupta, Raghubir and Li, Fanxing}, year={2019}, month={Nov} }