@article{bang_verster_hong_pal_velev_2024, title={Colloidal Engineering of Microplastic Capture with Biodegradable Soft Dendritic "Microcleaners"}, volume={3}, ISSN={["1520-5827"]}, DOI={10.1021/acs.langmuir.3c03869}, abstractNote={The introduction of colloidal principles that enable efficient microplastic collection from aquatic environments is a goal of great environmental importance. Here, we present a novel method of microplastic (MP) collection using biodegradable hydrogel soft dendritic colloids (hSDCs). These dendritic colloids have abundant nanofibrils and a large surface area, which provide an abundance of interfacial interactions and excellent networking capabilities, allowing for the capture of plastic particles and other contaminants. Here, we show how the polymer composition and morphology of the hSDCs can impact the capture of microplastics modeled by latex microbeads. Additionally, we use colloidal DLVO theory to interpret the capture efficiencies of microbeads of different sizes and surface functional groups. The results demonstrate the microplastic remediation efficiency of hydrogel dendricolloids and highlight the primary factors involved in the microbead interactions and adsorption. On a practical level, the results show that the development of environmentally benign microcleaners based on naturally sourced materials could present a sustainable solution for microplastic cleanup.}, journal={LANGMUIR}, author={Bang, Rachel S. and Verster, Lucille and Hong, Haeleen and Pal, Lokendra and Velev, Orlin D.}, year={2024}, month={Mar} } @article{roh_yeo_bang_han_velikov_velev_2024, title={Transparency-changing elastomers by controlling of the refractive index of liquid inclusions}, volume={36}, ISSN={["1361-648X"]}, DOI={10.1088/1361-648X/ad6110}, abstractNote={Complex materials that change their optical properties in response to changes in environmental conditions can find applications in displays, smart windows, and optical sensors. Here a class of biphasic composites with stimuli-adaptive optical transmittance is introduced. The biphasic composites comprise aqueous droplets (a mixture of water, glycerol, and surfactant) embedded in an elastomeric matrix. The biphasic composites are tuned to be optically transparent through a careful match of the refractive indices between the aqueous droplets and the elastomeric matrix. We demonstrate that stimuli (e.g., salinity and temperature change) can trigger variations in the optical transmittance of the biphasic composite. The introduction of such transparency-changing soft matter with liquid inclusions offers a novel approach to designing advanced optical devices, optical sensors, and metamaterials.}, number={42}, journal={JOURNAL OF PHYSICS-CONDENSED MATTER}, author={Roh, Sangchul and Yeo, Seonju and Bang, Rachel S. and Han, Koohee and Velikov, Krassimir P. and Velev, Orlin D.}, year={2024}, month={Oct} } @article{bang_bergman_li_mukherjee_alshehri_abbott_crook_velev_hall_you_2023, title={An integrated chemical engineering approach to understanding microplastics}, volume={1}, ISSN={["1547-5905"]}, DOI={10.1002/aic.18020}, abstractNote={AbstractEnvironmental and health risks posed by microplastics (MPs) have spurred numerous studies to better understand MPs' properties and behavior. Yet, we still lack a comprehensive understanding due to MP's heterogeneity in properties and complexity of plastic property evolution during aging processes. There is an urgent need to thoroughly understand the properties and behavior of MPs as there is increasing evidence of MPs' adverse health and environmental effects. In this perspective, we propose an integrated chemical engineering approach to improve our understanding of MPs. The approach merges artificial intelligence, theoretical methods, and experimental techniques to integrate existing data into models of MPs, investigate unknown features of MPs, and identify future areas of research. The breadth of chemical engineering, which spans biological, computational, and materials sciences, makes it well‐suited to comprehensively characterize MPs. Ultimately, this perspective charts a path for cross‐disciplinary collaborative research in chemical engineering to address the issue of MP pollution.}, journal={AICHE JOURNAL}, author={Bang, Rachel S. and Bergman, Michael and Li, Tianyu and Mukherjee, Fiona and Alshehri, Abdulelah S. and Abbott, Nicholas L. and Crook, Nathan C. and Velev, Orlin D. and Hall, Carol K. and You, Fengqi}, year={2023}, month={Jan} } @article{roh_williams_bang_stoyanov_velev_2019, title={Soft dendritic microparticles with unusual adhesion and structuring properties}, volume={18}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-019-0508-z}, abstractNote={The interplay between morphology, excluded volume and adhesivity of particles critically determines the physical properties of numerous soft materials and coatings 1-6 . Branched particles 2 or nanofibres 3 , nanofibrillated cellulose 4 or fumed silica 5 can enhance the structure-building abilities of colloids, whose adhesion may also be increased by capillarity or binding agents 6 . Nonetheless, alternative mechanisms of strong adhesion found in nature involve fibrillar mats with numerous subcontacts (contact splitting) 7-11 as seen in the feet of gecko lizards and spider webs 12-17 . Here, we describe the fabrication of hierarchically structured polymeric microparticles having branched nanofibre coronas with a dendritic morphology. Polymer precipitation in highly turbulent flow results in microparticles with fractal branching and nanofibrillar contact splitting that exhibit gelation at very low volume fractions, strong interparticle adhesion and binding into coatings and non-woven sheets. These soft dendritic particles also have potential advantages for food, personal care or pharmaceutical product formulations.}, number={12}, journal={NATURE MATERIALS}, author={Roh, Sangchul and Williams, Austin H. and Bang, Rachel S. and Stoyanov, Simeon D. and Velev, Orlin D.}, year={2019}, month={Dec}, pages={1315-+} }