@article{shahrin_bobko_2019, title={Micropillar compression investigation of size effect on microscale strength and failure mechanism of Calcium-Silicate-Hydrates (C-S-H) in cement paste}, volume={125}, ISSN={["1873-3948"]}, DOI={10.1016/j.cemconres.2019.105863}, abstractNote={The compressive strength and failure of concrete and cement exhibit strong size effect over various length scales. To investigate possible size effect on compressive strength and failure mechanism of Calcium-Silicate-Hydrates (C-S-H) in cement paste, micropillar compression experiments were performed on micropillar geometries fabricated by focused ion beam milling on potential C-S-H locations identified through coupled backscatter electron imaging (BSE) and energy dispersive spectroscopy (EDS) analysis. The compressive strength of C-S-H (181–1145 MPa) measured from C-S-H micropillars of varying diameters indicated presence of a size effect with strong increase in strength with decreasing diameter. The deformation mode at failure also exhibited size effect: the dominant failure mode changed from axial splitting to plastic crushing as the pillar diameter was decreased. The observed relationship between strength and pillar diameter can be modeled by an inverse square root dependency which closely corresponds to Bazant's scaling law of quasi-brittle failure.}, journal={CEMENT AND CONCRETE RESEARCH}, author={Shahrin, Rahnuma and Bobko, Christopher P.}, year={2019}, month={Nov} } @article{bagal_zhang_shahrin_dandley_zhao_poblete_oldham_zhu_parsons_bobko_et al._2017, title={Large-area nanolattice film with enhanced modulus, hardness, and energy dissipation}, volume={7}, journal={Scientific Reports}, author={Bagal, A. and Zhang, X. A. and Shahrin, R. and Dandley, E. C. and Zhao, J. J. and Poblete, F. R. and Oldham, C. J. and Zhu, Y. and Parsons, G. N. and Bobko, C. and et al.}, year={2017} }