Ramsey Lewis Bukan, M., Mandic, A., Kozumplik, V., Lewis, R. S., Simic, D., Sarcevic, H., & Liu, Y. (2024). Effects of Recurrent Selection on Population Structure and Allele Frequencies in the M3S Maize Population. AGRICULTURE-BASEL, 14(1). https://doi.org/10.3390/agriculture14010049 Castillo, M. S., Acosta, J. J., Hodge, G. R., Vann, M. C., & Lewis, R. S. (2023, January 16). Analysis of alkaloids and reducing sugars in processed and unprocessed tobacco leaves using a handheld near infrared spectrometer. JOURNAL OF NEAR INFRARED SPECTROSCOPY, Vol. 1. https://doi.org/10.1177/09670335221148594 Shi, R., Kernodle, S. P., Steede, T. M., & Lewis, R. S. (2023). Modified physiology of burley tobacco plants genetically engineered to express Yb1, a functional EGY enzyme. PLANTA, 258(4). https://doi.org/10.1007/s00425-023-04235-8 Lewis, R. S. S. (2023, April 14). Use of exotic Nicotiana tabacum germplasm for confronting an inverse genetic correlation in flue-cured tobacco. CROP SCIENCE. https://doi.org/10.1002/csc2.20954 Jin, J., McCorkle, K. L., Cornish, V., Carbone, I., Lewis, R. S., & Shew, H. D. (2022). Adaptation of Phytophthora nicotianae to Multiple Sources of Partial Resistance in Tobacco. PLANT DISEASE, 106(3), 906–917. https://doi.org/10.1094/PDIS-06-21-1241-RE Carvalho, B. L., Lewis, R., Bruzi, A. T., Padua, J. M. V., & Patto Ramalho, M. A. (2022, January 21). Adding genome-wide genotypic information to a tobacco (Nicotiana tabacum) breeding programme. PLANT BREEDING. https://doi.org/10.1111/pbr.12979 Burner, N., McCauley, A., Pramod, S., Frederick, J., Steede, T., Kernodle, S. P., & Lewis, R. S. (2022). Analyses of diverse low alkaloid tobacco germplasm identify naturally occurring nucleotide variability contributing to reduced leaf nicotine accumulation. MOLECULAR BREEDING, 42(1). https://doi.org/10.1007/s11032-021-01274-5 Bovet, L., Campanoni, P., Lu, J., Hilfiker, A., Kleinhans, S., Laparra, H., … Goepfert, S. (2022). CLCNt2 Mediates Nitrate Content in Tobacco Leaf, Impacting the Production of Tobacco-Specific Nitrosamines in Cured Leaves. FRONTIERS IN PLANT SCIENCE, 13. https://doi.org/10.3389/fpls.2022.741078 Kernodle, S. P., Webb, S., Steede, T. M., & Lewis, R. S. (2022, July 2). Combined reduced expression of two gene families lowers nicotine content to ultra-low levels in cultivated tobacco. PLANT CELL REPORTS. https://doi.org/10.1007/s00299-022-02895-6 Burner, N., Kernodle, S. P., Steede, T., & Lewis, R. S. (2022). Editing of A622 genes results in ultra-low nicotine whole tobacco plants at the expense of dramatically reduced growth and development. MOLECULAR BREEDING, 42(4). https://doi.org/10.1007/s11032-022-01293-w Mir, R. R., Kudapa, H., Pramod, S., & Lewis, R. S. (2022, October 4). Editorial: Biotechnological and genomic approaches for enhancing agronomic performance of crops. FRONTIERS IN GENETICS, Vol. 13. https://doi.org/10.3389/fgene.2022.991630 Carvalho, B. L., Bruzi, A. T., Lewis, R., Villela Padua, J. M., & Patto Ramalho, M. A. (2022). Exploitation of heterosis in tobacco breeding in Brazil. CROP BREEDING AND APPLIED BIOTECHNOLOGY, 22(2). https://doi.org/10.1590/1984-70332022v22n2a13 Carvalho, B. L., Lewis, R., Villela Padua, J. M., Bruzi, A. T., & Patto Ramalho, M. A. (2021). Combining ability of standardized indices for multi-trait selection in tobacco. CIENCIA E AGROTECNOLOGIA, 45. https://doi.org/10.1590/1413-7054202145005521 Lu, J., Chandrakanth, N. N., Lewis, R. S., Andres, K., Bovet, L., Goepfert, S., & Dewey, R. E. (2021). Constitutive activation of nitrate reductase in tobacco alters flowering time and plant biomass. SCIENTIFIC REPORTS, 11(1). https://doi.org/10.1038/s41598-021-83797-7 Heim, C., Ma, J., Willard, E., Shelton, C., & Lewis, R. S. (2021). Evaluation of tobacco lines and hybrids carrying Beinhart-1000 alleles at the Phn15.1 locus for agronomic and disease resistance characteristics. CROP SCIENCE, 61(4), 2456–2466. https://doi.org/10.1002/csc2.20520 Cheek, J. A., Vann, M. C., Lewis, R. S., & Fisher, L. R. (2021). Genetics influence postharvest measurements of flue-cured tobacco more than nitrogen application rate. AGRONOMY JOURNAL, 113(2), 1020–1028. https://doi.org/10.1002/agj2.20565 Shi, R., Jin, J., Nifong, J. M., Shew, D., & Lewis, R. S. (2021, October 22). Homoeologous chromosome exchange explains the creation of a QTL affecting soil-borne pathogen resistance in tobacco. PLANT BIOTECHNOLOGY JOURNAL. https://doi.org/10.1111/pbi.13693 Agacka-Moldoch, M., Rehman Arif, M. A., Lohwasser, U., Doroszewska, T., Lewis, R. S., & Boerner, A. (2021). QTL analysis of seed germination traits in tobacco (Nicotiana tabacum L.). JOURNAL OF APPLIED GENETICS, 62(3), 441–444. https://doi.org/10.1007/s13353-021-00623-6 Jin, J., Shi, R., Lewis, R. S., & Shew, H. D. (2021). RNAseq Reveals Differential Gene Expression Contributing to Phytophthora nicotianae Adaptation to Partial Resistance in Tobacco. AGRONOMY-BASEL, 11(4). https://doi.org/10.3390/agronomy11040656 Ma, J. M., Heim, C. B., Humphry, M., Nifong, J. M., & Lewis, R. S. (2020). Characterization of Phn15.1, a Newly Identified Phytophthora nicotianae Resistance QTL in Nicotiana tabacum. PLANT DISEASE, 104(6), 1638–1646. https://doi.org/10.1094/PDIS-10-19-2257-RE Lewis, R. S., Drake-Stowe, K. E., Heim, C., Steede, T., Smith, W., & Dewey, R. E. (2020). Genetic and Agronomic Analysis of Tobacco Genotypes Exhibiting Reduced Nicotine Accumulation Due to Induced Mutations in Berberine Bridge Like (BBL) Genes. FRONTIERS IN PLANT SCIENCE, 11. https://doi.org/10.3389/fpls.2020.00368 Ma, J., Hancock, W. G., Nifong, J. M., Kernodle, S. P., & Lewis, R. S. (2020). Identification and editing of a hybrid lethality gene expands the range of interspecific hybridization potential in Nicotiana. THEORETICAL AND APPLIED GENETICS, 133(10), 2915–2925. https://doi.org/10.1007/s00122-020-03641-w Henry, J. B., Vann, M. C., & Lewis, R. S. (2019). [Review of Agronomic Practices Affecting Nicotine Concentration in Flue-Cured Tobacco: A Review]. AGRONOMY JOURNAL, 111(6), 3067–3075. https://doi.org/10.2134/agronj2019.04.0268 Zeng, J. M., Nifong, J., Liu, Y., Huang, C. J., Fang, D. H., Lewis, R. S., & Li, Y. P. (2019). Evaluating diverse systems of tobacco genetic resistance to Phytophthora nicotianae in Yunnan, China. PLANT PATHOLOGY, 68(9), 1616–1623. https://doi.org/10.1111/ppa.13091 Dexter-Boone, A., Humphry, M., Shi, R., & Lewis, R. S. (2019). Genetic Control of Facultative Parthenocarpy in Nicotiana tabacum L. JOURNAL OF HEREDITY, 110(5), 610–617. https://doi.org/10.1093/jhered/esz025 Ma, J. M., Heim, C., Humphry, M., Nifong, J. M., & Lewis, R. S. (2019). Genetic analysis of Phn7.1, a major QTL conferring partial resistance to Phytophthora nicotianae in Nicotiana tabacum. MOLECULAR BREEDING, 39(1). https://doi.org/10.1007/s11032-018-0923-x Dexter-Boone, A., & Lewis, R. S. (2019). Heterosis in Flue-Cured Tobacco and Its Utility in Predicting Transgressive Segregation within Derived Populations of Inbred Lines. CROP SCIENCE, 59(3), 957–967. https://doi.org/10.2135/cropsci2018.08.0486 Shi, R., Hubert, H., Dexter-Boone, A., Zeng, J., Kernodle, S. P., & Lewis, R. S. (2019). Identification and validation of SNP markers associated with Wz-mediated Phytophthora nicotianae resistance in Nicotiana tabacum L. MOLECULAR BREEDING, 39(7). https://doi.org/10.1007/s11032-019-1015-2 Sinclair, T. R., Rufty, T. W., & Lewis, R. S. (2019). [Review of Increasing Photosynthesis: Unlikely Solution For World Food Problem]. TRENDS IN PLANT SCIENCE, 24(11), 1032–1039. https://doi.org/10.1016/j.tplants.2019.07.008 Lewis, R. S. (2019, July). Potential Mandated Lowering of Nicotine Levels in Cigarettes: A Plant Perspective. NICOTINE & TOBACCO RESEARCH, Vol. 21, pp. 991–995. https://doi.org/10.1093/ntr/nty022 McCorkle, K. L., Drake-Stowe, K., Lewis, R. S., & Shew, D. (2018). Characterization of Phytophthora nicotianae Resistance Conferred by the Introgressed Nicotiana rustica Region, Wz, in Flue-Cured Tobacco. PLANT DISEASE, 102(2), 309–317. https://doi.org/10.1094/pdis-03-17-0339-re Shi, R., Lewis, R. S., & Panthee, D. R. (2018). Filter paper-based spin column method for cost-efficient DNA or RNA purification. PLOS ONE, 13(12). https://doi.org/10.1371/journal.pone.0203011 Edwards, K. D., Fernandez-Pozo, N., Drake-Stowe, K., Humphry, M., Evans, A. D., Bombarely, A., … Mueller, L. A. (2017). A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC GENOMICS, 18. https://doi.org/10.1186/s12864-017-3791-6 Hancock, W. G., & Lewis, R. S. (2017). Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum x synthetic tobacco cross. MOLECULAR BREEDING, 37(4). https://doi.org/10.1007/s11032-017-0654-4 Drake-Stowe, K., Bakaher, N., Goepfert, S., Philippon, B., Mark, R., Peterson, P., & Lewis, R. S. (2017). Multiple Disease Resistance Loci Affect Soilborne Disease Resistance in Tobacco (Nicotiana tabacum). PHYTOPATHOLOGY, 107(9), 1055–1061. https://doi.org/10.1094/phyto-03-17-0118-r Steede, W. T., Ma, J. M., Eickholt, D. P., Drake-Stowe, K. E., Kernodle, S. P., Shew, H. D., … Lewis, R. S. (2017). The Tobacco Trichome Exudate Z-abienol and Its Relationship With Plant Resistance to Phytophthora nicotianae. PLANT DISEASE, 101(7), 1214–1221. https://doi.org/10.1094/pdis-10-16-1512-re Lu, J., Zhang, L., Lewis, R. S., Bovet, L., Goepfert, S., Jack, A. M., … Dewey, R. E. (2016). Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke. PLANT BIOTECHNOLOGY JOURNAL, 14(7), 1500–1510. https://doi.org/10.1111/pbi.12510 Wells, R., Eickholt, D. P. J., Lewis, R., Vann, M. C., & Fisher, L. R. (2016). Heat Unit Accumulation and Days to Anthesis Relationship in Tobacco Genotypes with an Introgressed QTL Affecting Leaf Number. CROP SCIENCE, 56(6), 3228–3236. https://doi.org/10.2135/cropsci2016.04.0278 Drake, K. E., Moore, J. M., Bertrand, P., Fortnum, B., Peterson, P., & Lewis, R. S. (2015). Black Shank Resistance and Agronomic Performance of Flue-Cured Tobacco Lines and Hybrids Carrying the Introgressed Nicotiana rustica Region, Wz. CROP SCIENCE, 55(1), 79–86. https://doi.org/10.2135/cropsci2014.02.0164 Wang, B., Lewis, R. S., Shi, J., Song, Z., Gao, Y., Li, W., … Qu, R. (2015). Genetic Factors for Enhancement of Nicotine Levels in Cultivated Tobacco. SCIENTIFIC REPORTS, 5. https://doi.org/10.1038/srep17360 Hancock, W. G., Kuraparthy, V., Kernodle, S. P., & Lewis, R. S. (2015). Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N-tabacum x N-africana interspecific cross. MOLECULAR BREEDING, 35(9). https://doi.org/10.1007/s11032-015-0372-8 Agacka-Modoch, M., Nagel, M., Doroszewska, T., Lewis, R. S., & Boerner, A. (2015). Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). EUPHYTICA, 202(3), 479–486. https://doi.org/10.1007/s10681-015-1355-x Lewis, R. S., Lopez, H. O., Bowen, S. W., Andres, K. R., Steede, W. T., & Dewey, R. E. (2015). Transgenic and Mutation-Based Suppression of a Berberine Bridge Enzyme-Like (BBL) Gene Family Reduces Alkaloid Content in Field-Grown Tobacco. PLOS ONE, 10(2). https://doi.org/10.1371/journal.pone.0117273 Gottula, J., Lewis, R., Saito, S., & Fuchs, M. (2014). Allopolyploidy and the evolution of plant virus resistance. BMC EVOLUTIONARY BIOLOGY, 14. https://doi.org/10.1186/1471-2148-14-149 Eickholt, D. P., & Lewis, R. S. (2014). Effect of an Introgressed Nicotiana tomentosa Leaf Number QTL on Yield and Quality Characteristics in Flue-Cured Tobacco. CROP SCIENCE, 54(2), 586–594. https://doi.org/10.2135/cropsci2013.07.0464 Cai, B., Jack, A. M., Lewis, R. S., Dewey, R. E., & Bush, L. P. (2013). (R)-nicotine biosynthesis, metabolism and translocation in tobacco as determined by nicotine demethylase mutants. PHYTOCHEMISTRY, 95, 188–196. https://doi.org/10.1016/j.phytochem.2013.06.012 Drake, K., & Lewis, R. S. (2013). An Introgressed Nicotiana rustica Genomic Region Confers Resistance to Phytophthora nicotianae in Cultivated Tobacco. CROP SCIENCE, 53(4), 1366–1374. https://doi.org/10.2135/cropsci2012.10.0605 Eickholt, D. P., & Lewis, R. S. (2013). Breeding Cycles Expedited by FT-mediated Reduction in Generation Time. CROP SCIENCE, 53(6), 2384–2391. https://doi.org/10.2135/cropsci2013.03.0150 Sarcevic, H., Gunjaca, J., Budimir, A., Boic, M., Bolaric, S., Bukan, M., … Kozumplik, V. (2013). Long-term Genetic Improvement and Genetic Diversity of Croatian Flue-cured Tobacco (Nicotiana tabacum L.) Cultivars. CROP SCIENCE, 53(1), 112–120. https://doi.org/10.2135/cropsci2012.03.0173 Bukan, M., Sarcevic, H., Buhinicek, I., Palaversic, B., Lewis, R. S., & Kozumplik, V. (2013). STALK ROT RESISTANCE IN MAKSIMIR 3 SYNTHETIC MAIZE POPULATION AFTER FOUR CYCLES OF RECURRENT SELECTION. GENETIKA-BELGRADE, 45(3), 921–928. https://doi.org/10.2298/gensr1303921b Li, D., Lewis, R. S., Jack, A. M., Dewey, R. E., Bowen, S. W., & Miller, R. D. (2012). Development of CAPS and dCAPS markers for CYP82E4, CYP82E5v2 and CYP82E10 gene mutants reducing nicotine to nornicotine conversion in tobacco. MOLECULAR BREEDING, 29(3), 589–599. https://doi.org/10.1007/s11032-011-9575-9 Vontimitta, V., & Lewis, R. S. (2012). Growth Chamber Evaluation of a Tobacco 'Beinhart 1000' x 'Hicks' Mapping Population for Quantitative Trait Loci Affecting Resistance to Multiple Races of Phytophthora nicotianae. CROP SCIENCE, 52(1), 91–98. https://doi.org/10.2135/cropsci2011.06.0303 Lewis, R. S., Parker, R. G., Danehower, D. A., Andres, K., Jack, A. M., Whitley, D. S., & Bush, L. P. (2012). Impact of Alleles at the Yellow Burley (Yb) Loci and Nitrogen Fertilization Rate on Nitrogen Utilization Efficiency and Tobacco-Specific Nitrosamine (TSNA) Formation in Air-Cured Tobacco. Journal of Agricultural and Food Chemistry, 60(25), 6454–6461. https://doi.org/10.1021/jf2053614 Vontimitta, V., & Lewis, R. S. (2012). Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. MOLECULAR BREEDING, 29(1), 89–98. https://doi.org/10.1007/s11032-010-9528-8 Lewis, R. S., & Rose, C. (2011). Identification of Tobacco Haploids on the Basis of Transgenic Overexpression of PAP1 from Arabidopsis thaliana. CROP SCIENCE, 51(4), 1491–1497. https://doi.org/10.2135/cropsci2010.09.0546 Nifong, J. M., Nicholson, J. S., Shew, H. D., & Lewis, R. S. (2011). Variability for Resistance to Phytophthora nicotianae Within a Collection of Nicotiana rustica Accessions. PLANT DISEASE, 95(11), 1443–1447. https://doi.org/10.1094/pdis-11-10-0862 Lewis, R. S., & Rose, C. (2010). Agronomic Performance of Tobacco Mosaic Virus-Resistant Tobacco Lines and Hybrids Possessing the Resistance Gene N Introgressed on Different Chromosomes. CROP SCIENCE, 50(4), 1339–1347. https://doi.org/10.2135/cropsci2009.10.0615 Vontimitta, V., Danehower, D. A., Steede, T., Moon, H. S., & Lewis, R. S. (2010). Analysis of a Nicotiana tabacum L. Genomic Region Controlling Two Leaf Surface Chemistry Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 58(1), 294–300. https://doi.org/10.1021/jf903256h Lewis, R. S., Bowen, S. W., Keogh, M. R., & Dewey, R. E. (2010). Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L Functional characterization of the CYP82E10 gene. PHYTOCHEMISTRY, 71(17-18), 1988–1998. https://doi.org/10.1016/j.phytochem.2010.09.011 Lewis, R. S., & Kernodle, S. P. (2009). A method for accelerated trait conversion in plant breeding. THEORETICAL AND APPLIED GENETICS, 118(8), 1499–1508. https://doi.org/10.1007/s00122-009-0998-1 Moon, H. S., Nicholson, J. S., Heineman, A., Lion, K., Hoeven, P., Hayes, A. J., & Lewis, R. S. (2009). Changes in Genetic Diversity of US Flue-Cured Tobacco Germplasm over Seven Decades of Cultivar Development. CROP SCIENCE, 49(2), 498–508. https://doi.org/10.2135/cropsci2008.05.0253 Moon, H. S., Nifong, J. M., Nicholson, J. S., Heineman, A., Lion, K., Hoeven, R., … Lewis, R. S. (2009). Microsatellite-based Analysis of Tobacco (Nicotiana tabacum L.) Genetic Resources. CROP SCIENCE, 49(6), 2149–2159. https://doi.org/10.2135/cropsci2009.01.0024 Elliott, P. E., Lewis, R. S., Shew, H. D., Gutierrez, W. A., & Nicholson, J. S. (2008). Evaluation of tobacco germplasm for seedling resistance to stem rot and target spot caused by Thanatephorus cucumeris. PLANT DISEASE, 92(3), 425–430. https://doi.org/10.1094/PDIS-92-3-0425 Lewis, R. S., Jack, A. M., Morris, J. W., Robert, V. J. M., Gavilano, L. B., Siminszky, B., … Dewey, R. E. (2008). RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. PLANT BIOTECHNOLOGY JOURNAL, 6(4), 346–354. https://doi.org/10.1111/j.1467-7652.2008.00324.x Moon, H. S., Nicholson, J. S., & Lewis, R. S. (2008). Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. GENOME, 51(8), 547–559. https://doi.org/10.1139/G08-039 Lewis, R. S., Milla, S. R., & Kernodle, S. P. (2007). Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. THEORETICAL AND APPLIED GENETICS, 114(5), 841–854. https://doi.org/10.1007/s00122-006-0482-0 Lewis, R. S., & Nicholson, J. S. (2007). Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana Germplasm Collection. GENETIC RESOURCES AND CROP EVOLUTION, 54(4), 727–740. https://doi.org/10.1007/s10722-006-0024-2 Lewis, R. S. (2007). Evaluation of Nicotiana tabacum genotypes possessing Nicotiana africana-derived genetic tolerance to potato virus Y. CROP SCIENCE, 47(5), 1975–1984. https://doi.org/10.2135/cropsci2007.01.0001 Lewis, R. S., Linger, L. R., Wolff, M. F., & Wernsman, E. A. (2007). The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. THEORETICAL AND APPLIED GENETICS, 115(2), 169–178. https://doi.org/10.1007/s00122-007-0552-y Lewis, R. S. (2006). Identification of germplasm of possible value for confronting an unfavorable inverse genetic correlation in tobacco. CROP SCIENCE, 46(4), 1764–1771. https://doi.org/10.2135/cropsci2005.12-0519 Lewis, R. S., Milla, S. R., & Levin, J. S. (2005). Molecular and genetic characterization of N. glutinosa L. chromosome segments in tobacco mosaic virus (TMV)-resistant tobacco accessions. Crop Science, 45(6), 2355–2362. https://doi.org/10.2135/cropsci2005.0121 Milla, S. R., Levin, J. S., Lewis, R. S., & Rufty, R. C. (2005). RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam in tobacco. Crop Science, 45(6), 2346–2354. https://doi.org/10.2135/cropsci2004.0754 Lewis, R. S. (2005). Transfer of resistance to potato virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. THEORETICAL AND APPLIED GENETICS, 110(4), 678–687. https://doi.org/10.1007/s00122-004-1893-4 Lewis, R. S., & Goodman, M. M. (2003). Incorporation of tropical maize germplasm into inbred lines derived from temperate x temperate-adapted tropical line crosses: agronomic and molecular assessment. THEORETICAL AND APPLIED GENETICS, 107(5), 798–805. https://doi.org/10.1007/s00122-003-1341-x Lewis, R. S., & Wernsman, E. A. (2001). Efforts to initiate construction of a disease resistance package on a designer chromosome in tobacco. CROP SCIENCE, 41(5), 1420–1427. https://doi.org/10.2135/cropsci2001.4151420x