@article{ren_song_zhu_o'connor_dong_2023, title={All Electrohydrodynamic Printed Flexible Organic Thin Film Transistors}, volume={6}, ISSN={["2365-709X"]}, url={https://doi.org/10.1002/admt.202300410}, DOI={10.1002/admt.202300410}, abstractNote={Abstract}, journal={ADVANCED MATERIALS TECHNOLOGIES}, author={Ren, Ping and Song, Runqiao and Zhu, Yong and O'Connor, Brendan and Dong, Jingyan}, year={2023}, month={Jun} } @article{ren_liu_song_o'connor_dong_zhu_2021, title={Achieving High-Resolution Electrohydrodynamic Printing of Nanowires on Elastomeric Substrates through Surface Modification}, volume={3}, ISSN={["2637-6113"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85099220488&partnerID=MN8TOARS}, DOI={10.1021/acsaelm.0c00747}, abstractNote={Stretchable electronics based on nanomaterials has received much interest recently. However, it is challenging to print 1D nanomaterials (e.g., nanowires) with high resolution on stretchable elasto...}, number={1}, journal={ACS APPLIED ELECTRONIC MATERIALS}, publisher={American Chemical Society (ACS)}, author={Ren, Ping and Liu, Yuxuan and Song, Runqiao and O'Connor, Brendan and Dong, Jingyan and Zhu, Yong}, year={2021}, month={Jan}, pages={192–202} } @article{balar_rech_siddika_song_schrickx_sheikh_ye_bonilla_awartani_ade_et al._2021, title={Resolving the Molecular Origin of Mechanical Relaxations in Donor-Acceptor Polymer Semiconductors}, volume={32}, ISSN={["1616-3028"]}, url={https://doi.org/10.1002/adfm.202105597}, DOI={10.1002/adfm.202105597}, abstractNote={Abstract}, number={4}, journal={ADVANCED FUNCTIONAL MATERIALS}, publisher={Wiley}, author={Balar, Nrup and Rech, Jeromy James and Siddika, Salma and Song, Runqiao and Schrickx, Harry M. and Sheikh, Nadeem and Ye, Long and Bonilla, Anthony Megret and Awartani, Omar and Ade, Harald and et al.}, year={2021}, month={Oct} } @article{song_yao_liu_wang_dong_zhu_brendan t. o'connor_2020, title={Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes}, volume={12}, ISSN={["1944-8252"]}, url={https://doi.org/10.1021/acsami.0c15339}, DOI={10.1021/acsami.0c15339}, abstractNote={Stretchable electronics are poised to revolutionize personal healthcare and robotics, where they enable distributed and conformal sensors. Transistors are fundamental building blocks of electronics, and there is a need to produce stretchable transistors using low-cost and scalable fabrication techniques. Here, we introduce a facile fabrication approach using laser patterning and transfer printing to achieve high-performance, solution-processed intrinsically stretchable organic thin-film transistors (OTFTs). The device consists of Ag nanowire (NW) electrodes, where the source and drain electrodes are patterned using laser ablation. The Ag NWs are then partially embedded in a poly(dimethylsiloxane) (PDMS) matrix. The electrodes are combined with a PDMS dielectric and polymer semiconductor, where the layers are individually transfer printed to complete the OTFT. Two polymer semiconductors, DPP-DTT and DPP-4T, are considered and show stable operation under the cyclic strain of 20 and 40%, respectively. The OTFTs maintain electrical performance by adopting a buckled structure after the first stretch-release cycle. The conformability and stretchability of the OTFT is also demonstrated by operating the transistor while adhered to a finger being flexed. The ability to pattern highly conductive Ag NW networks using laser ablation to pattern electrodes as well as interconnects provides a simple strategy to produce complex stretchable OTFT-based circuits.}, number={45}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Song, Runqiao and Yao, Shanshan and Liu, Yuxuan and Wang, Hongyu and Dong, Jingyan and Zhu, Yong and Brendan T. O'Connor}, year={2020}, month={Nov}, pages={50675–50683} } @article{sun_song_balar_sen_kline_brendan t. o'connor_2019, title={Impact of Substrate Characteristics on Stretchable Polymer Semiconductor Behavior}, volume={11}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.8b16457}, abstractNote={Stretchable conductive polymer films are required to survive not only large tensile strain but also stay functional after the reduction in applied strain. In the deformation process, the elastomer substrate that is typically employed plays a critical role in response to the polymer film. In this study, we examine the role of a polydimethylsiloxane (PDMS) elastomer substrate on the ability to achieve stretchable PDPP-4T films. In particular, we consider the adhesion and near-surface modulus of the PDMS tuned through UV/ozone (UVO) treatment on the competition between film wrinkling and plastic deformation. We also consider the role of PDMS tension on the stability of films under cyclic strain. We find that increasing the near-surface modulus of the PDMS and maintaining the PDMS in tension throughout the cyclic strain process promote plastic deformation over film wrinkling. In addition, the UVO treatment increases film adhesion to the PDMS resulting in a significantly reduced film folding and delamination. For a 20 min UVO-treated PDMS, we show that a PDPP-4T film root-mean-square roughness is consistently below 3 nm for up to 100 strain cycles with a strain range of 40%. In addition, although the film is plastically deforming, the microstructural order is largely stable as probed by grazing incidence X-ray scattering and UV-visible spectroscopy. These results highlight the importance of neighboring elastomer characteristics on the ability to achieve stretchable polymer semiconductors.}, number={3}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Sun, Tianlei and Song, Runqiao and Balar, Nrup and Sen, Pratik and Kline, R. Joseph and Brendan T. O'Connor}, year={2019}, month={Jan}, pages={3280–3289} } @article{yao_ren_song_liu_huang_dong_o'connor_zhu_2019, title={Nanomaterial‐Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications}, volume={32}, ISSN={0935-9648 1521-4095}, url={http://dx.doi.org/10.1002/adma.201902343}, DOI={10.1002/adma.201902343}, abstractNote={Abstract}, number={15}, journal={Advanced Materials}, publisher={Wiley}, author={Yao, Shanshan and Ren, Ping and Song, Runqiao and Liu, Yuxuan and Huang, Qijin and Dong, Jingyan and O'Connor, Brendan T. and Zhu, Yong}, year={2019}, month={Aug}, pages={1902343} }