@article{laat_leon_dale_gouveia_carbajal_schiavon_unruh_iannone iii_milla-lewis_2024, title={Molecular analysis of St. Augustinegrass cultivar mixtures composition over time and latitude}, volume={9}, ISSN={["1435-0653"]}, url={https://doi.org/10.1002/csc2.21370}, DOI={10.1002/csc2.21370}, abstractNote={Abstract St. Augustinegrass [ Stenotaphrum secundatum (Walt.) Kuntze] is commonly planted in residential and commercial landscapes as a cultivar monoculture predisposing this lawn to pest invasion and high‐maintenance inputs. Researchers have suggested that increasing genetic diversity by growing cultivars in mixtures may increase turfgrass stress resilience. However, the stability and uniformity of those mixtures has not been studied. The present study was carried out to evaluate the stability of St. Augustinegrass cultivars mixtures over time and across three latitudes. The study was conducted in Citra and Fort Lauderdale, FL, and Jackson Springs, NC. Simple‐sequence repeats markers were used to genotype leaf samples of St. Augustinegrass cultivars planted in two‐ and four‐cultivar mixtures. Leaf samples were collected 1 and 3 years after establishment. In all locations, cultivar richness and evenness declined over time. Similarly, the relative abundance of the least persistent cultivars decreased approximately 50%–100% depending on cultivar and location. Differences in growth patterns among cultivars resulted in cultivar displacement and the predominance of a single cultivar. Cultivars that covered the ground faster or formed dense canopies early after establishment were dominant at the end of the study. Locally developed cultivars tended to be more dominant in their original latitude. The use of cultivar mixtures may help the identification of vigorous, competitive, and stress tolerant cultivars in turfgrass breeding programs. However, their commercial use remains challenging as if the patterns observed here for 3 years are representative of a continuous trend, and they do not persist over time.}, journal={CROP SCIENCE}, author={Laat, Rocio and Leon, Ramon G. and Dale, Adam G. and Gouveia, Beatriz and Carbajal, Esdras M. and Schiavon, Marco and Unruh, J. Bryan and Iannone III, Basil and Milla-Lewis, Susana R.}, year={2024}, month={Sep} }