@article{johnson_moore_wong_godwin_streelman_roberts_2020, title={Exploratory behaviour is associated with microhabitat and evolutionary radiation in Lake Malawi cichlids}, volume={160}, ISSN={["1095-8282"]}, DOI={10.1016/j.anbehav.2019.11.006}, abstractNote={Encountering and adaptively responding to unfamiliar or novel stimuli is a fundamental challenge facing animals and is linked to fitness. Behavioural responses to novel stimuli can differ strongly between closely related species; however, the ecological and evolutionary factors underlying these differences are not well understood, in part because most comparative investigations have focused on only two species. In this study, we investigate behavioural responses to novel environments, or exploratory behaviours, sampling from a total of 20 species in a previously untested vertebrate system, Lake Malawi cichlid fishes, which comprises hundreds of phenotypically diverse species that have diverged in the past one million years. We show generally conserved behavioural response patterns to different types of environmental stimuli in Lake Malawi cichlids, spanning multiple assays and paralleling other teleost and rodent lineages. Next, we demonstrate that more specific dimensions of exploratory behaviour vary strongly among Lake Malawi cichlids, and that a large proportion of this variation is explained by species differences. We further show that species differences in open field behaviours are explained by microhabitat and by a major evolutionary split between the mbuna and benthic/utaka radiations in Lake Malawi. Lastly, we track some individuals across a subset of behavioural assays and show that patterns of behavioural covariation across contexts are characteristic of modular complex traits. Taken together, our results tie ecology and evolution to natural behavioural variation, and highlight Lake Malawi cichlids as a powerful system for understanding the biological basis of exploratory behaviours.}, journal={ANIMAL BEHAVIOUR}, author={Johnson, Zachary V and Moore, Emily C. and Wong, Ryan Y. and Godwin, John R. and Streelman, Jeffrey T. and Roberts, Reade B.}, year={2020}, month={Feb}, pages={121–134} } @article{wong_cunnmings_2014, title={Expression patterns of neuroligin-3 and tyrosine hydroxylase across the brain in mate choice contexts in female swordtails}, volume={83}, number={3}, journal={Brain, Behavior and Evolution}, author={Wong, R. Y. and Cunnmings, M. E.}, year={2014}, pages={231–243} } @article{wong_mcleod_godwin_2014, title={Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio)}, volume={15}, ISSN={["1471-2164"]}, DOI={10.1186/1471-2164-15-905}, abstractNote={Male and female vertebrates typically differ in a range of characteristics, from morphology to physiology to behavior, which are influenced by factors such as the social environment and the internal hormonal and genetic milieu. However, sex differences in gene expression profiles in the brains of vertebrates are only beginning to be understood. Fishes provide a unique complement to studies of sex differences in mammals and birds given that fish show extreme plasticity and lability of sexually dimorphic characters and behaviors during development and even adulthood. Hence, teleost models can give additional insight into sexual differentiation. The goal of this study is to identify neurotranscriptomic mechanisms for sex differences in the brain.In this study we examined whole-brain sex-biased gene expression through RNA-sequencing across four strains of zebrafish. We subsequently conducted systems level analyses by examining gene network dynamics between the sexes using weighted gene coexpression network analysis. Surprisingly, only 61 genes (approximately 0.4% of genes analyzed) showed a significant sex effect across all four strains, and 48 of these differences were male-biased. Several of these genes are associated with steroid hormone biosynthesis. Despite sex differences in a display of stress-related behaviors, basal transcript levels did not predict the intensity of the behavioral display. WGCNA revealed only one module that was significantly associated with sex. Intriguingly, comparing intermodule dynamics between the sexes revealed only moderate preservation. Further we identify sex-specific gene modules.Despite differences in morphology, physiology, and behavior, there is limited sex-biased neural gene expression in zebrafish. Further, genes found to be sex-biased are associated with hormone biosynthesis, suggesting that sex steroid hormones may be key contributors to sexual behavioral plasticity seen in teleosts. A possible mechanism is through regulating specific brain gene networks.}, journal={BMC GENOMICS}, author={Wong, Ryan Y. and McLeod, Melissa M. and Godwin, John}, year={2014}, month={Oct} } @article{wong_oxendine_godwin_2013, title={Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment}, volume={14}, ISSN={["1471-2164"]}, DOI={10.1186/1471-2164-14-348}, abstractNote={Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug.We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched.Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on several different molecular pathways to reduce anxiety-related behaviors in wild-derived zebrafish. This study provides data that could help identify common molecular mechanisms of fluoxetine action across animal taxa.}, journal={BMC GENOMICS}, author={Wong, Ryan Y. and Oxendine, Sarah E. and Godwin, John}, year={2013}, month={May} }