@article{stowe_tucker_thompson_piper_richards_rogers_mathies_melander_cavanagh_2012, title={Evaluation of the toxicity of 2-aminoimidazole antibiofilm agents using both cellular and model organism systems}, volume={35}, ISSN={["1525-6014"]}, DOI={10.3109/01480545.2011.614620}, abstractNote={Biofilm formation is a ubiquitous bacterial defense mechanism and has been shown to be a primary element in the antibiotic resistance of many human diseases, especially in the case of nosocomial infections. Recently, we have developed several compound libraries that are extremely effective at both dispersing preexisting biofilms and also inhibiting their initial formation. In addition to their antibiofilm properties, some of these molecules are able to resensitize resistant bacterial strains to previously ineffective antibiotics and are being assessed as adjuvants. In this study, we evaluated the toxic effects of three of our most effective 2-aminoimidazole compounds (dihydrosventrin, RA, and SPAR) using a rapid pipeline that combines a series of assays. A methylthiazolyldiphenyl-tetrazolium assay, using the HaCaT keratinocyte cell line was used to determine epidermal irritants and was combined with Caenorhabditis elegans fecundity assays that demonstrated the effects of environmental exposure to various concentrations of these molecules. In each case, the assays showed that the compounds did not exhibit toxicity until they reached well above their current biofilm dispersion/inhibition concentrations. The most effective antibiofilm compound also had significant effects when used in conjunction with several standard antibiotics against resistant bacteria. Consequently, it was further investigated using the C. elegans assay in combination with different antibiotics and was found to maintain the same low level of toxicity as when acting alone, bolstering its candidacy for further testing as an adjuvant.}, number={3}, journal={DRUG AND CHEMICAL TOXICOLOGY}, author={Stowe, Sean D. and Tucker, Ashley T. and Thompson, Richele and Piper, Amanda and Richards, Justin J. and Rogers, Steven A. and Mathies, Laura D. and Melander, Christian and Cavanagh, John}, year={2012}, month={Jul}, pages={310–315} } @article{worthington_rogers_huigens_melander_ritchie_2012, title={Foliar-Applied Small Molecule that Suppresses Biofilm Formation and Enhances Control of Copper-Resistant Xanthomonas euvesicatoria on Pepper}, volume={96}, ISSN={["1943-7692"]}, DOI={10.1094/pdis-02-12-0190-re}, abstractNote={ We report a small molecule additive, a member of the 2-aminoimidazole (2AI) group that is an analogue of the marine sponge natural product oroidin that suppresses resistance of Xanthomonas euvesicatoria to copper and decreases biofilm formation in an in vitro system. In laboratory experiments, 2AI combined with copper reduced both bacterial multiplication in broth and bacterial recovery on pepper leaf discs of a copper-resistant strain of X. euvesicatoria to a level close to that of a copper-sensitive strain. Compound 2AI used alone exhibited minimal bactericidal activity. In 3 years of field experiments, when combined with a copper-containing material, copper hydroxide (Kocide 3000), and other antibacterial materials, these spray mixtures resulted in decreased bacterial spot foliar disease and increased fruit yields using hybrid bell pepper (Capsicum annuum) cultivars and copper-resistant strains of X. euvesicatoria. This study demonstrates the concept for using small molecules as additives to antibacterial compounds at nonbactericidal concentrations under field conditions that, in the laboratory, were demonstrated to suppress bacterial biofilms and copper-resistant strains. }, number={11}, journal={PLANT DISEASE}, author={Worthington, R. J. and Rogers, S. A. and Huigens, R. W., III and Melander, C. and Ritchie, D. F.}, year={2012}, month={Nov}, pages={1638–1644} } @article{rogers_lindsey_whitehead_mullikin_melander_2011, title={Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents}, volume={21}, ISSN={["1464-3405"]}, DOI={10.1016/j.bmcl.2010.12.057}, abstractNote={The successful marriage of structural features from our 2-aminoimidazole and menthyl carbamate classes of anti-biofilm agents has resulted in the development of a novel hybrid scaffold of biofilm modulators. The compounds were evaluated against a panel of four bacterial strains for anti-biofilm and anti-microbial activity.}, number={4}, journal={BIOORGANIC & MEDICINAL CHEMISTRY LETTERS}, author={Rogers, Steven A. and Lindsey, Erick A. and Whitehead, Daniel C. and Mullikin, Trey and Melander, Christian}, year={2011}, month={Feb}, pages={1257–1260} } @article{su_rogers_mccall_smith_ravishankar_mullikin_melander_2010, title={A nitroenolate approach to the synthesis of 4,5-disubstituted-2-aminoimidazoles. Pilot library assembly and screening for antibiotic and antibiofilm activity}, volume={8}, number={12}, journal={Organic & Biomolecular Chemistry}, author={Su, Z. M. and Rogers, S. A. and McCall, W. S. and Smith, A. C. and Ravishankar, S. and Mullikin, T. and Melander, C.}, year={2010}, pages={2814–2822} } @article{rogers_bero_melander_2010, title={Chemical Synthesis and Biological Screening of 2-Aminoimidazole-Based Bacterial and Fungal Antibiofilm Agents}, volume={11}, ISSN={["1439-7633"]}, DOI={10.1002/cbic.200900617}, abstractNote={Abstract}, number={3}, journal={CHEMBIOCHEM}, author={Rogers, Steven A. and Bero, Joseph D. and Melander, Christian}, year={2010}, month={Feb}, pages={396–410} } @article{reed_huigens_rogers_melander_2010, title={Modulating the development of E. coli biofilms with 2-aminoimidazoles}, volume={20}, ISSN={["0960-894X"]}, DOI={10.1016/j.bmcl.2010.08.075}, abstractNote={The synthesis of a 20 member 2-aminoimidazole/triazole pilot library is reported. Each member of the library was screened for its ability to inhibit or promote biofilm development of either Escherichia coli and Acinetobacter baumannii. From this screen, E. coli-selective 2-aminoimidazoles were discovered, with the best inhibitor inhibiting biofilm development with an IC(50) of 13μM. The most potent promoter of E. coli biofilm formation promoted biofilm development by 321% at 400μM.}, number={21}, journal={BIOORGANIC & MEDICINAL CHEMISTRY LETTERS}, author={Reed, Catherine S. and Huigens, Robert W., III and Rogers, Steven A. and Melander, Christian}, year={2010}, month={Nov}, pages={6310–6312} } @article{rogers_huigens_cavanagh_melander_2010, title={Synergistic Effects between Conventional Antibiotics and 2-Aminoimidazole-Derived Antibiofilm Agents}, volume={54}, ISSN={["0066-4804"]}, DOI={10.1128/aac.01418-09}, abstractNote={ABSTRACT}, number={5}, journal={ANTIMICROBIAL AGENTS AND CHEMOTHERAPY}, author={Rogers, Steven A. and Huigens, Robert W., III and Cavanagh, John and Melander, Christian}, year={2010}, month={May}, pages={2112–2118} } @article{rogers_whitehead_mullikin_melander_2010, title={Synthesis and bacterial biofilm inhibition studies of ethyl N-(2-phenethyl) carbamate derivatives}, volume={8}, number={17}, journal={Organic & Biomolecular Chemistry}, author={Rogers, S. A. and Whitehead, D. C. and Mullikin, T. and Melander, C.}, year={2010}, pages={3857–3859} } @article{huigens_reyes_reed_bunders_rogers_steinhauer_melander_2010, title={The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii}, volume={18}, ISSN={["1464-3391"]}, DOI={10.1016/j.bmc.2009.12.003}, abstractNote={Multidrug-resistant bacterial infections continue to be a rising global health concern. Herein is described the development of a class of novel 2-aminobenzimidazoles with antibiotic activity. These active 2-aminobenzimidazoles retain their antibiotic activity against several strains of multidrug-resistant Staphylococcus aureus and Acinetobacter baumannii when compared to susceptible strains.}, number={2}, journal={BIOORGANIC & MEDICINAL CHEMISTRY}, author={Huigens, Robert W., III and Reyes, Samuel and Reed, Catherine S. and Bunders, Cynthia and Rogers, Steven A. and Steinhauer, Andrew T. and Melander, Christian}, year={2010}, month={Jan}, pages={663–674} } @article{rogers_huigens_melander_2009, title={A 2-Aminobenzimidazole That Inhibits and Disperses Gram-Positive Biofilms through a Zinc-Dependent Mechanism}, volume={131}, ISSN={["0002-7863"]}, DOI={10.1021/ja9024676}, abstractNote={A number of 2-aminobenzimidazole derivatives were synthesized and screened for their ability to inhibit and disperse bacterial biofilms. From these compounds, a lead 2-aminobenzimidazole was identified that both inhibited and dispersed MRSA, vancomycin-resistant Enterococcus faecium, and Staphylococcus epidermidis biofilms. Mechanistic studies showed that the activity is Zn(II)-dependent, potentially via a direct zinc-chelating mechanism.}, number={29}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Rogers, Steven A. and Huigens, Robert W., III and Melander, Christian}, year={2009}, month={Jul}, pages={9868-+} } @article{huigens_rogers_steinhauer_melander_2009, title={Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates}, volume={7}, ISSN={["1477-0539"]}, DOI={10.1039/b817926c}, abstractNote={A chemically diverse library of TAGE-triazole conjugates was synthesized utilizing click chemistry on the TAGE scaffold. This library of small molecules was screened for anti-biofilm activity and found to possess the ability of inhibiting biofilm formation against Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. One such compound in this library demonstrated the most potent inhibitory effect against Staphylococcus aureus biofilm formation that has been displayed by any 2-aminoimidazole derivative.}, number={4}, journal={ORGANIC & BIOMOLECULAR CHEMISTRY}, author={Huigens, Robert W., III and Rogers, Steven A. and Steinhauer, Andrew T. and Melander, Christian}, year={2009}, pages={794–802} } @article{rogers_krayer_lindsey_melander_2009, title={Tandem dispersion and killing of bacteria from a biofilm}, volume={7}, ISSN={["1477-0539"]}, DOI={10.1039/b817923a}, abstractNote={The combined effects of biofilm dispersion with a 2-aminoimidazole-triazole conjugate and bactericidal activity with a photodynamic inactivation agent suggest a novel combination therapy for treating diverse microbial infections.}, number={3}, journal={ORGANIC & BIOMOLECULAR CHEMISTRY}, author={Rogers, Steven A. and Krayer, Michael and Lindsey, Jonathan S. and Melander, Christian}, year={2009}, pages={603–606} }