@article{chen_marx_rabiei_2016, title={Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams}, volume={106}, ISSN={["1778-4166"]}, DOI={10.1016/j.ijthermalsci.2016.03.005}, abstractNote={A comprehensive experimental and computational evaluation of thermal behavior and fire retardant properties of composite metal foams (CMFs) is reported in this study. Thermal behavior characterizations were carried out through specific heat, effective thermal conductivity, and coefficient of thermal expansion analyses using differential scanning calorimetry, high temperature guarded-comparative-longitudinal heat flow technique, and thermomechanical analyzer (TMA), respectively. The experimental results were compared with analytical results obtained from, respectively, rule of mixture, Brailsford and Major's model, and modified Turner's model for verification. United States Nuclear Regulatory Commission (USNRC) standards were employed as regulatory standards and criteria for fire retardant property study. The results revealed a superior thermal resistance and fire survivability of CMFs compared to 304L stainless steel. A physics-based three-dimensional model accounting for heat conduction was built using Finite Element Analysis to validate the reliability of the experimental results. The model led to a good reproduction of the experimentally measured data when comparing CMF to bulk stainless steel. This research indicates that one of the potential applications of lightweight CMFs can be in nuclear spent fuel casks replacing conventional structural and radiation shielding materials with demonstrated benefits of excellent thermal isolation, fire retardant, light weight and energy absorption capabilities.}, journal={INTERNATIONAL JOURNAL OF THERMAL SCIENCES}, author={Chen, Shuo and Marx, Jacob and Rabiei, Afsaneh}, year={2016}, month={Aug}, pages={70–79} } @article{chen_bourham_rabiei_2015, title={Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams}, volume={117}, ISSN={["0969-806X"]}, DOI={10.1016/j.radphyschem.2015.07.003}, abstractNote={Steel–steel composite metal foams (S–S CMFs) and Aluminum–steel composite metal foams (Al–S CMFs) with various sphere sizes and matrix materials were manufactured and investigated for nuclear and radiation environments applications. 316 L Stainless steel, high-speed T15 steel and aluminum materials were used as the matrix material together with 2, 4 and 5.2 mm steel hollow spheres to manufacture various types of composite metal foams (CMFs). High-speed T15 steel is selected due to its high tungsten and vanadium concentration (both high-Z elements) to further improve the shielding efficiency of CMFs. This new type of S–S CMF is called high-Z steel–steel composite metal foam (HZ S–S CMF). Radiation shielding efficiency of all types of CMFs was explored for the attenuation of X-ray, gamma ray and neutron. The experimental results were compared with pure lead and Aluminum A356, and verified theoretically through XCOM and Monte Carlo Z-particle Transport Code (MCNP). It was observed that the radiation shielding effectiveness of CMFs is relatively independent of sphere sizes as long as the ratio of sphere-wall thickness to its outer-radius stays constant. However, the smaller spheres seem to be more efficient in general due to the fine fluctuation in the gray value profile of their 2D Micro-CT images. S–S CMFs and Al–S CMFs are respectively 275% and 145% more effective for X-ray attenuation than Aluminum A356. Compared to pure lead, CMFs show adequate attenuation with additional advantages of being lightweight and more environmentally friendly. The mechanical performance of HZ S–S CMFs under quasi-static compression was compared to that of other classes of S–S CMF. It is observed that the addition of high-Z elements to the matrix of CMFs improved their shielding against X-rays, low energy gamma rays and neutrons, while maintained their low density, high mechanical properties and high-energy absorption capability.}, journal={RADIATION PHYSICS AND CHEMISTRY}, author={Chen, Shuo and Bourham, Mohamed and Rabiei, Afsaneh}, year={2015}, month={Dec}, pages={12–22} } @article{chen_bourham_rabiei_2015, title={Neutrons attenuation on composite metal foams and hybrid open-cell Al foam}, volume={109}, ISSN={["0969-806X"]}, DOI={10.1016/j.radphyschem.2014.11.003}, abstractNote={A comprehensive investigation of monochromatic neutron attenuation effectiveness for close-cell composite metal foams (CMFs) and open-cell Al foam infiltrated with variety of second phase materials is presented using both experimental and theoretical methods. The experimental results indicated higher neutron flux reduction in open-cell Al foam with fillers compared to the close-cell CMFs due to their large percentage of low Z elements such as hydrogen, boron and carbon, with superior neutron attenuation performance, in their filler materials. The main factor controlling the shielding effectiveness of steel–steel CMFs is found to be the ratio of the thickness of the sphere wall to the sphere radius while the intermetallic phases in the matrix of Al–steel CMFs seem to have a major role on their shielding properties. Successful models that link the observed material properties and microstructure have been developed using Monte Carlo N-Particle Transport Code (MCNP) to verify the accuracy of the experimental results. Close-cell CMFs were proposed through three different sphere arrangements: simple cubic, body center cubic and face center cubic, whereas open-cell Al foam with fillers was represented by creating a three-dimensional structure using periodic unit cell through two approaches. The simulation results were found to be in good agreement with the experimental values. This research indicates the potential of utilizing light-weight close-cell CMFs and open-cell Al foam with fillers as nuclear shields replacing conventional materials to achieve a specified shielding level with additional benefits of excellent energy absorption and thermal isolation.}, journal={RADIATION PHYSICS AND CHEMISTRY}, author={Chen, Shuo and Bourham, Mohamed and Rabiei, Afsaneh}, year={2015}, month={Apr}, pages={27–39} } @article{chen_bourham_rabiei_2014, title={Novel light-weight materials for shielding gamma ray}, volume={96}, DOI={10.1016/j.radphyschem.2013.08.001}, abstractNote={A comparison of gamma ray attenuation effectiveness of bulk aluminum, close-cell composite metal foams and open-cell aluminum foam infiltrated with variety of second phase materials were investigated and reported in this study. Mass attenuation coefficients for six sets of samples with three different areal densities of 2, 5 and 10 g/cm2 were determined at photon energies of 0.060, 0.662, 1.173, and 1.332 MeV. Theoretical values were calculated using XCOM software package. A complete agreement was observed between experimental and theoretical results. It is observed that close-cell composite metal foams exhibit a better shielding capability compared to open-cell Al foam with fillers. It is also observed that close-cell composite metal foams offer superior shielding effectiveness compared to bulk aluminum for energies below 0.662 MeV, the mass attenuation coefficients of steel–steel composite metal foam and Al–steel composite metal foam were measured 400 and 300% higher than that of aluminum A356. This study indicates the potential of utilizing the light-weight composite metal foams as shielding material replacing current heavy materials used for attenuation of low energy gamma ray with additional advantages such as high energy absorption and excellent heat rejection capabilities.}, journal={Radiation Physics and Chemistry}, author={Chen, S. and Bourham, Mohamed and Rabiei, A.}, year={2014}, pages={27–37} }