@article{kisthardt_thanissery_pike_foley_theriot_2023, title={The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota}, volume={205}, ISSN={["1098-5530"]}, DOI={10.1128/jb.00180-23}, abstractNote={ABSTRACT}, number={9}, journal={JOURNAL OF BACTERIOLOGY}, author={Kisthardt, Samantha C. and Thanissery, Rajani and Pike, Colleen M. and Foley, Matthew H. and Theriot, Casey M.}, year={2023}, month={Sep} } @article{zhu_scholle_kisthardt_xie_2022, title={

Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E

}, volume={571}, ISSN={["1089-862X"]}, DOI={10.1016/j.virol.2022.04.005}, abstractNote={Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available in the developed countries to prevent the infection of this virus; however, medicines are necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the common cold. The main protease (Mpro) is an essential enzyme required for the multiplication of these two viruses in the host cells, and thus is an appropriate candidate to screen potential medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In this study, we report docking simulation with two Mpro enzymes and five flavonols and three dihydroflavonols, in vitro inhibition of the SARS-CoV-2 Mpro, and in vitro inhibition of the HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol, (+)- dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercitrin, and rutin could bind to at least two subsites (S1, S1', S2, and S4) in the binding pocket and inhibit the activity of SARS-CoV-2 Mpro. Their affinity scores ranged from -8.8 to -7.4 (kcal/mol). Likewise, these compounds were predicted to bind and inhibit the HCoV-229E Mpro activity with affinity scores ranging from -7.1 to -7.8 (kcal/mol). In vitro inhibition assays showed that seven available compounds effectively inhibited the SARS-CoV-2 Mpro activity and their IC50 values ranged from 0.125 to 12.9 μM. Five compounds inhibited the replication of HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and dihydroflavonols are promising candidates for curbing the two viruses.}, journal={VIROLOGY}, author={Zhu, Yue and Scholle, Frank and Kisthardt, Samantha C. and Xie, De-Yu}, year={2022}, month={Jun}, pages={21–33} } @article{wang_amanah_ali_payne_kisthardt_scholle_ormond_mathur_gluck_2022, title={A standardized procedure for quantitative evaluation of residual viral activity on antiviral treated textiles}, volume={11}, ISSN={["1746-7748"]}, url={https://doi.org/10.1177/00405175221126532}, DOI={10.1177/00405175221126532}, abstractNote={ The SARS-CoV-2 pandemic has increased the demand for antiviral technologies to mitigate or prevent the risk of viral transmission. Antiviral treated textiles have the potential to save lives, especially in healthcare settings that rely on reusable patient-care textiles and personal protective equipment. Currently, little is known about the role of textiles in cross-contamination and pathogen transmission, despite the wealth of information on hard surfaces and fomites harboring viruses that remain viable in certain circumstances. In addition, there is no international standard method for evaluating residual viral activity on textiles, which would allow a thorough investigation of the efficacy of antiviral textile products. Therefore, this pilot study aims to develop and refine a standardized protocol to quantitatively evaluate residual viral activity on antiviral textiles. Specifically, we focused on general textiles, such as bed linens, commonly used in healthcare settings for patient care. The Tissue Culture Infectious Dose 50 (TCID50) method is frequently used to quantitatively evaluate viral infectivity on textiles, but has not been established as a standard. This procedure involves observing the cytopathic effect of a given virus on cells grown in a 96-well plate after several days of incubation to determine the infectivity titer. We used HCoV-229E and Huh-7 human liver cancer cells for this investigation. We worked to improve the TCID50 method through variations of different steps within the protocol to attain reproducible results. Our proposed optimized hybrid protocol has shown evidence that the protocol is technically simpler and more efficient, and provides successful, consistent results. The analysis showed a significant difference between the treated fabric compared with controls. }, journal={TEXTILE RESEARCH JOURNAL}, author={Wang, Ziyu and Amanah, Alaowei Y. and Ali, Kiran M. and Payne, Lucy C. and Kisthardt, Samantha and Scholle, Frank and Ormond, R. Bryan and Mathur, Kavita and Gluck, Jessica M.}, year={2022}, month={Nov} } @article{ghareeb_peddinti_kisthardt_scholle_spontak_ghiladi_2021, title={Toward Universal Photodynamic Coatings for Infection Control}, volume={8}, ISSN={["2296-858X"]}, DOI={10.3389/fmed.2021.657837}, abstractNote={The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.}, journal={FRONTIERS IN MEDICINE}, author={Ghareeb, C. Roland and Peddinti, Bharadwaja S. T. and Kisthardt, Samantha C. and Scholle, Frank and Spontak, Richard J. and Ghiladi, Reza A.}, year={2021}, month={Jul} }