@article{zoellner_stuart_chung_dougherty_jones_maggard_2016, title={CuNb1−xTaxO3 (x ≤ 0.25) solid solutions: impact of Ta(v) substitution and Cu(i) deficiency on their structure, photocatalytic, and photoelectrochemical properties}, volume={4}, ISSN={2050-7488 2050-7496}, url={http://dx.doi.org/10.1039/c5ta06609c}, DOI={10.1039/c5ta06609c}, abstractNote={Investigation of CuNb1−xTaxO3has led to new insights into the visible-light photocurrents and photocatalytic activities of solid solutions.}, number={8}, journal={Journal of Materials Chemistry A}, publisher={Royal Society of Chemistry (RSC)}, author={Zoellner, Brandon and Stuart, Sean and Chung, Ching-Chang and Dougherty, Daniel B. and Jones, Jacob L. and Maggard, Paul A.}, year={2016}, pages={3115–3126} } @article{stuart_gray_nevola_su_sachet_ulrich_dougherty_2016, title={Magnetoelectric oxide films for spin manipulation in graphene}, volume={10}, ISSN={["1862-6270"]}, DOI={10.1002/pssr.201510433}, abstractNote={The challenge of creating a graphene spin field effect transistor (spin‐FET) demands a magnetic gate dielectric material whose magnetization can be switched electrically. We have grown films of Cr2O3 on top of graphite and graphene by pulsed laser deposition that shows this crucial functionality. We demonstrate that the Cr2O3 films are magnetoelectric by poling them in combined electric and magnetic fields and then using magnetic force microscopy to observe spontaneous surface domain structure as a function of poling field. In addition, we show that the electric field created by a conducting AFM tip can be used to write magnetic patterns in the film that demonstrate the kind of continuous magnetoelectric control needed for a prototype spin‐FET. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)}, number={3}, journal={PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS}, author={Stuart, S. C. and Gray, B. and Nevola, D. and Su, L. and Sachet, E. and Ulrich, M. and Dougherty, D. B.}, year={2016}, month={Mar}, pages={242–247} } @article{mcafee_gann_guan_stuart_rowe_dougherty_ade_2014, title={Toward Single-Crystal Hybrid-Carbon Electronics: Impact of Graphene Substrate Defect Density on Copper Phthalocyanine Film Growth}, volume={14}, ISSN={["1528-7505"]}, DOI={10.1021/cg500504u}, abstractNote={Graphene has long been recognized as a potential replacement for indium tin oxide as a transparent conducting substrate that may not only be cheaper to manufacture but also may provide mechanical flexibility and templating for preferential organic film growth. Here, we report the discovery that the thin film growth mode and crystal structure of copper phthalocyanine (CuPc), a prototype organic semiconductor, is extremely sensitive to even atomic-scale defects (e.g., steps) on the graphene surface and that high quality films can be grown with a well-defined crystal orientation that should be favorable for optimized solar cell applications. The initial growth involves flat-lying copper phthalocyanine molecules in a triclinic brickstone crystal with (012) orientation. Thicker films on pristine graphite, as well as thin films on lower quality graphene, show an orientational transition to the flat-lying (112)-oriented brickstone, which nucleates near film defects and grows in more compact 3D islands. The thi...}, number={9}, journal={CRYSTAL GROWTH & DESIGN}, author={McAfee, Terry and Gann, Eliot and Guan, Tianshuai and Stuart, Sean C. and Rowe, Jack and Dougherty, Daniel B. and Ade, Harald}, year={2014}, month={Sep}, pages={4394–4401} } @article{stuart_satchet_sandin_maria_rowe_dougherty_ulrich_2013, title={Smooth MgO films grown on graphite and graphene by pulsed laser deposition}, volume={31}, ISSN={["2166-2746"]}, DOI={10.1116/1.4818511}, abstractNote={Pulsed laser deposition was used to grow thin (1–100 nm) magnesium oxide films directly on graphite and epitaxial graphene on SiC(0001). The authors observe very smooth (typical rms roughness of ∼0.4 nm) film morphologies that are nearly independent of film thickness and conformal to the substrate for films grown on room temperature substrates. Surface roughness is less than 1 nm for thicknesses up to 100 nm and is independent of oxygen background pressure during growth. X-ray diffraction shows no evidence of crystallinity for films grown on room temperature substrates but shows ⟨100⟩ texture for films grown on heated substrates that also have very rough surface morphologies. X-ray photoelectron spectroscopy shows hydroxylation of films due to air exposure that can only be partially removed by annealing, indicating the presence of atomic defects in the films.}, number={5}, journal={JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B}, author={Stuart, Sean C. and Satchet, Edward and Sandin, Andreas and Maria, Jon-Paul and Rowe, John E. and Dougherty, Daniel B. and Ulrich, Marc}, year={2013}, month={Sep} }