Siddharth Gupta Gupta, S., & Narayan, J. (2023). Laser-induced synthesis of cubic BN nanoneedles: a new approach to fabricating nanomaterials for advanced applications. JOURNAL OF NANOPARTICLE RESEARCH, 25(12). https://doi.org/10.1007/s11051-023-05897-x Gupta, S., Gupta, S., & Gupta, A. (2023). Reimagining Carbon Nanomaterial Analysis: Empowering Transfer Learning and Machine Vision in Scanning Electron Microscopy for High-Fidelity Identification. MATERIALS, 16(15). https://doi.org/10.3390/ma16155426 Joshi, P., Shukla, S., Gupta, S., Joshi, N., Narayan, J., & Narayan, R. (2023, June 14). Synthesis of laser-patterned MoS2 nanoneedles for advanced electrochemical sensing. MRS COMMUNICATIONS, Vol. 6. https://doi.org/10.1557/s43579-023-00381-y Gupta, S., Sachan, R., & Narayan, J. (2022). Emergence of orbital two-channel Kondo effect in epitaxial TiN thin films. Solid State Communications, 341, 114547. https://doi.org/10.1016/j.ssc.2021.114547 Joshi, P., Shukla, S., Gupta, S., Riley, P. R., Narayan, J., & Narayan, R. (2022). Excimer Laser Patterned Holey Graphene Oxide Films for Nonenzymatic Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES, 14(32), 37149–37160. https://doi.org/10.1021/acsami.2c09096 Gupta, S., Joshi, P., Sachan, R., & Narayan, J. (2022). Fabricating Graphene Oxide/h-BN Metal Insulator Semiconductor Diodes by Nanosecond Laser Irradiation. NANOMATERIALS, 12(15). https://doi.org/10.3390/nano12152718 Gupta, A. K., Gupta, S., Mandal, S., & Sachan, R. (2022). Laser Irradiation-Induced Nanoscale Surface Transformations in Strontium Titanate. CRYSTALS, 12(5). https://doi.org/10.3390/cryst12050624 Moatti, A., Mineo-Foley, G., Gupta, S., Sachan, R., & Narayan, J. (2022). Spin Engineering of VO2 Phase Transitions and Removal of Structural Transition. ACS APPLIED MATERIALS & INTERFACES, 14(10), 12883–12892. https://doi.org/10.1021/acsami.1c24978 Joshi, P., Riley, P., Gupta, S., Narayan, R. J., & Narayan, J. (2021). [Review of Advances in laser-assisted conversion of polymeric and graphitic carbon into nanodiamond films]. NANOTECHNOLOGY, 32(43). https://doi.org/10.1088/1361-6528/ac1097 Gupta, A. K., Gupta, S., & Sachan, R. (2021, November 9). Laser Irradiation Induced Atomic Structure Modifications in Strontium Titanate. JOM, Vol. 11. https://doi.org/10.1007/s11837-021-04996-1 Joshi, P., Gupta, S., Riley, P. R., Narayan, R. J., & Narayan, J. (2021). Liquid phase regrowth of (110) nanodiamond film by UV laser annealing of PTFE to generate dense CVD microdiamond film. DIAMOND AND RELATED MATERIALS, 117. https://doi.org/10.1016/j.diamond.2021.108481 Narayan, J., Bhaumik, A., Gupta, S., Joshi, P., Riley, P., & Narayan, R. J. (2021). Role of Q-carbon in nucleation and formation of continuous diamond film. CARBON, 176, 558–568. https://doi.org/10.1016/j.carbon.2021.02.049 Joshi, P., Haque, A., Gupta, S., Narayan, R. J., & Narayan, J. (2021). Synthesis of multifunctional microdiamonds on stainless steel substrates by chemical vapor deposition. CARBON, 171, 739–749. https://doi.org/10.1016/j.carbon.2020.09.064 Haque, A., Gupta, S., & Narayan, J. (2020). Characteristics of diamond deposition on Al2O3, diamond-like carbon and Q-carbon. ACS Applied Electronic Materials, 2(5), 1323–1334. https://doi.org/10.1021/acsaelm.0c00106 Gupta, S., & Narayan, J. (2020). Direct conversion of Teflon into nanodiamond films. Materials Research Letters, 8(11), 408–416. https://doi.org/10.1080/21663831.2020.1778111 Gupta, S., Joshi, P., & Narayan, J. (2020). Electron mobility modulation in graphene oxide by controlling carbon melt lifetime. CARBON, 170, 327–337. https://doi.org/10.1016/j.carbon.2020.07.073 Gupta, S., Sachan, R., & Narayan, J. (2020). Evidence of weak antilocalization in epitaxial TiN thin films. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 498. https://doi.org/10.1016/j.jmmm.2019.166094 Gupta, S., Sachan, R., & Narayan, J. (2019). Evidence of weak antilocalization in epitaxial TiN thin films. Journal of Magnetism and Magnetic Materials, 166094. https://doi.org/https://doi.org/10.1016/j.jmmm.2019.166094 Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. (2020). Diamond and Related Materials. https://doi.org/10.1016/j.diamond.2020.107742 Gupta, S., Sachan, R., & Narayan, J. (2020). Nanometer-Thick Hexagonal Boron Nitride Films for 2D Field-Effect Transistors. ACS Applied Nano Materials, 3(8), 7930–7941. https://doi.org/10.1021/acsanm.0c01416 Gupta, S., & Narayan, J. (2020). Selective Liquid-Phase Regrowth of Reduced Graphene Oxide, Nanodiamond, and Nanoscale Q-Carbon by Pulsed Laser Annealing for Radiofrequency Devices. ACS Applied Nano Materials, 3(6), 5178–5188. https://doi.org/10.1021/acsanm.0c00609 Narayan, J., Bhaumik, A., Sachan, R., Haque, A., Gupta, S., & Pant, P. (2019). Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds. Nanoscale, 11(5), 2238–2248. https://doi.org/10.1039/C8NR08823C Formation of Q-carbon and diamond coatings on WC and steel substrates. (2019). Diamond and Related Materials. https://doi.org/10.1016/j.diamond.2019.107515 Gupta, S., & Narayan, J. (2019). Non-equilibrium processing of ferromagnetic heavily reduced graphene oxide. Carbon, 153, 663–673. https://doi.org/10.1016/j.carbon.2019.07.064 Sachan, R., Gupta, S., & Narayan, J. (2020). Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Applied Materials & Interfaces, 12(1), 1330–1338. https://doi.org/10.1021/acsami.9b17428 Gupta, S., & Narayan, J. (2019). Reduced Graphene Oxide/Amorphous Carbon P–N Junctions: Nanosecond Laser Patterning. ACS Applied Materials & Interfaces, 11(27), 24318–24330. https://doi.org/10.1021/acsami.9b05374 Gupta, S., Moatti, A., Bhaumik, A., Sachan, R., & Narayan, J. (2019). Room-temperature ferromagnetism in epitaxial titanium nitride thin films. Acta Materialia, 166, 221–230. https://doi.org/10.1016/j.actamat.2018.12.041 Scale-up of Q‑carbon and nanodiamonds by pulsed laser annealing. (2019). Diamond and Related Materials. https://doi.org/10.1016/j.diamond.2019.107531 Gupta, S., Sachan, R., & Narayan, J. (2019). Wafer scale-up and emergence of ferromagnetism in superhard Q-carbon coatings by nanosecond pulsed laser irradiation. International SAMPE Technical Conference, 2019-May. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85068799491&partnerID=MN8TOARS Gupta, S., Sachan, R., Bhaumik, A., & Narayan, J. (2018). Enhanced mechanical properties of Q-carbon nanocomposites by nanosecond pulsed laser annealing. NANOTECHNOLOGY, 29(45). https://doi.org/10.1088/1361-6528/aadd75 Narayan, J., Bhaumik, A., Gupta, S., Haque, A., & Sachan, R. (2018). Progress in Q-carbon and related materials with extraordinary properties. MATERIALS RESEARCH LETTERS, 6(7), 353–364. https://doi.org/10.1080/21663831.2018.1458753 Narayan, J., Gupta, S., Bhaumik, A., Sachan, R., Cellini, F., & Riedo, E. (2018). Q-carbon harder than diamond. MRS COMMUNICATIONS, 8(2), 428–436. https://doi.org/10.1557/mrc.2018.35 Bhaumik, A., Sachan, R., Gupta, S., Narayan, J., Nori, S., Kumar, D., & Majumdar, A. K. (2018). Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q‐Carbon: Implications for Potential Spintronic Devices. ACS Applied Nano Materials, 1(2), 807–819. https://doi.org/10.1021/acsanm.7b00253 Gupta, S., Bhaumik, A., Sachan, R., & Narayan, J. (2018). Structural Evolution of Q-Carbon and Nanodiamonds. JOM, 70(4), 450–455. https://doi.org/10.1007/s11837-017-2714-y Gupta, S., Sachan, R., Bhaumik, A., Pant, P., & Narayan, J. (2018). Undercooling driven growth of Q-carbon, diamond, and graphite. MRS COMMUNICATIONS, 8(2), 533–540. https://doi.org/10.1557/mrc.2018.76 Moatti, A., Sachan, R., Gupta, S., & Narayan, J. (2018). Vacancy-Driven Robust Metallicity of Structurally Pinned Monoclinic Epitaxial VO2 Thin Films. ACS Applied Materials & Interfaces, 11(3), 3547–3554. https://doi.org/10.1021/acsami.8b17879 Bhaumik, A., Sachan, R., Gupta, S., & Narayan, J. (2017). Discovery of High-Temperature Superconductivity (T-c=55 K) in B-Doped Q-Carbon. ACS NANO, 11(12), 11915–11922. https://doi.org/10.1021/acsnano.7b06888