@article{jones_skrip_seliger_jones_wakie_takeuchi_petras_petrasova_meentemeyer_2022, title={Spotted lanternfly predicted to establish in California by 2033 without preventative management}, volume={5}, ISSN={["2399-3642"]}, url={https://doi.org/10.1038/s42003-022-03447-0}, DOI={10.1038/s42003-022-03447-0}, abstractNote={AbstractModels that are both spatially and temporally dynamic are needed to forecast where and when non-native pests and pathogens are likely to spread, to provide advance information for natural resource managers. The potential US range of the invasive spotted lanternfly (SLF, Lycorma delicatula) has been modeled, but until now, when it could reach the West Coast’s multi-billion-dollar fruit industry has been unknown. We used process-based modeling to forecast the spread of SLF assuming no treatments to control populations occur. We found that SLF has a low probability of first reaching the grape-producing counties of California by 2027 and a high probability by 2033. Our study demonstrates the importance of spatio-temporal modeling for predicting the spread of invasive species to serve as an early alert for growers and other decision makers to prepare for impending risks of SLF invasion. It also provides a baseline for comparing future control options.}, number={1}, journal={COMMUNICATIONS BIOLOGY}, author={Jones, Chris and Skrip, Megan M. and Seliger, Benjamin J. and Jones, Shannon and Wakie, Tewodros and Takeuchi, Yu and Petras, Vaclav and Petrasova, Anna and Meentemeyer, Ross K.}, year={2022}, month={Jun} } @article{gaydos_jones_jones_millar_petras_petrasova_mitasova_meentemeyer_2021, title={Evaluating online and tangible interfaces for engaging stakeholders in forecasting and control of biological invasions}, volume={9}, ISSN={["1939-5582"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85115251448&partnerID=MN8TOARS}, DOI={10.1002/eap.2446}, abstractNote={AbstractEcological forecasts will be best suited to inform intervention strategies if they are accessible to a diversity of decision‐makers. Researchers are developing intuitive forecasting interfaces to guide stakeholders through the development of intervention strategies and visualization of results. Yet, few studies to date have evaluated how user interface design facilitates the coordinated, cross‐boundary management required for controlling biological invasions. We used a participatory approach to develop complementary tangible and online interfaces for collaboratively forecasting biological invasions and devising control strategies. A diverse group of stakeholders evaluated both systems in the real‐world context of controlling sudden oak death, an emerging forest disease killing millions of trees in California and Oregon. Our findings suggest that while both interfaces encouraged adaptive experimentation, tangible interfaces are particularly well suited to support collaborative decision‐making. Reflecting on the strengths of both systems, we suggest workbench‐style interfaces that support simultaneous interactions and dynamic geospatial visualizations.}, number={8}, journal={ECOLOGICAL APPLICATIONS}, publisher={Wiley}, author={Gaydos, Devon A. and Jones, Chris M. and Jones, Shannon K. and Millar, Garrett C. and Petras, Vaclav and Petrasova, Anna and Mitasova, Helena and Meentemeyer, Ross K.}, year={2021}, month={Sep} } @article{jones_jones_petrasova_petras_gaydos_skrip_takeuchi_bigsby_meentemeyer_2021, title={Iteratively forecasting biological invasions with PoPS and a little help from our friends}, volume={6}, ISSN={["1540-9309"]}, url={http://dx.doi.org/10.1002/fee.2357}, DOI={10.1002/fee.2357}, abstractNote={Ecological forecasting has vast potential to support environmental decision making with repeated, testable predictions across management‐relevant timescales and locations. Yet resource managers rarely use co‐designed forecasting systems or embed them in decision making. Although prediction of planned management outcomes is particularly important for biological invasions to optimize when and where resources should be allocated, spatial–temporal models of spread typically have not been openly shared, iteratively updated, or interactive to facilitate exploration of management actions. We describe a species‐agnostic, open‐source framework – called the Pest or Pathogen Spread (PoPS) Forecasting Platform – for co‐designing near‐term iterative forecasts of biological invasions. Two case studies are presented to demonstrate that iterative calibration yields higher forecast skill than using only the earliest‐available data to predict future spread. The PoPS framework is a primary example of an ecological forecasting system that has been both scientifically improved and optimized for real‐world decision making through sustained participation and use by management stakeholders.}, number={7}, journal={FRONTIERS IN ECOLOGY AND THE ENVIRONMENT}, publisher={Wiley}, author={Jones, Chris M. and Jones, Shannon and Petrasova, Anna and Petras, Vaclav and Gaydos, Devon and Skrip, Megan M. and Takeuchi, Yu and Bigsby, Kevin and Meentemeyer, Ross K.}, year={2021}, month={Jun} } @book{jones_murphy_2019, place={Lanham, Maryland}, title={Diversity and inclusion in libraries : a call to action and strategies for success}, publisher={Rowman & Littlefield}, year={2019} }