@article{mathews_epps_blackburn_goshe_grunden_dunn_2019, title={Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste}, volume={6}, ISSN={["2054-5703"]}, DOI={10.1098/rsos.180748}, abstractNote={A citizen science project found that the greenhouse camel cricket ( Diestrammena asynamora ) is common in North American homes. Public response was to wonder ‘what good are they anyway?’ and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical and biofuel industries. We screened gut bacteria of greenhouse camel crickets and another household insect, the hide beetle ( Dermestes maculatus ) for the ability to grow on and degrade lignocellulose components as well as the lignocellulose-derived industrial waste product black liquor. From three greenhouse camel crickets and three hide beetles, 14 bacterial strains were identified that were capable of growth on lignocellulosic components, including lignin. Cedecea lapagei was selected for further study due to growth on most lignocellulose components. The C. lapagei secretome was identified using LC/MS/MS analysis. This work demonstrates a novel source of lignocellulose-degrading bacteria and introduces an effective workflow to identify bacterial enzymes for transforming industrial waste into value-added products. More generally, our research suggests the value of ecologically guided discovery of novel organisms.}, number={3}, journal={ROYAL SOCIETY OPEN SCIENCE}, author={Mathews, Stephanie L. and Epps, Mary Jane and Blackburn, R. Kevin and Goshe, Michael B. and Grunden, Amy M. and Dunn, Robert R.}, year={2019}, month={Mar} } @article{mathews_pawlak_grunden_2015, title={Bacterial biodegradation and bioconversion of industrial lignocellulosic streams}, volume={99}, ISSN={0175-7598 1432-0614}, url={http://dx.doi.org/10.1007/S00253-015-6471-Y}, DOI={10.1007/s00253-015-6471-y}, number={7}, journal={Applied Microbiology and Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Mathews, Stephanie L. and Pawlak, Joel and Grunden, Amy M.}, year={2015}, month={Feb}, pages={2939–2954} } @article{mathews_pawlak_grunden_2014, title={Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste}, volume={164}, ISSN={["1873-2976"]}, DOI={10.1016/j.biortech.2014.04.093}, abstractNote={Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. A microorganism was isolated from a black liquor sample collected from the Department of Forest Biomaterials at North Carolina State University. The organism was identified as Paenibacillus glucanolyticus using 16S rRNA sequence analysis and was shown to be capable of growth on black liquor as the sole carbon source based on minimal media growth studies. Minimal media growth curves demonstrated that this facultative anaerobic microorganism can degrade black liquor as well as cellulose, hemicellulose, and lignin. Gas chromatography–mass spectrometry was used to identify products generated by P. glucanolyticus when it was grown anaerobically on black liquor. Fermentation products which could be converted into high-value chemicals such as succinic, propanoic, lactic, and malonic acids were detected.}, journal={BIORESOURCE TECHNOLOGY}, author={Mathews, Stephanie L. and Pawlak, Joel J. and Grunden, Amy M.}, year={2014}, month={Jul}, pages={100–105} }