@article{ozer_basegmez_whitaker_slate_giesbrecht_2017, title={Sampling dried figs for aflatoxin - Part 1: variability associated with sampling, sample preparation, and analysis}, volume={10}, ISSN={["1875-0796"]}, DOI={10.3920/wmj2016.2052}, abstractNote={The variability associated with the aflatoxin test procedure used to estimate aflatoxins in bulk shipments of dried figs was investigated. Sixteen 10 kg laboratory samples were taken from each of twenty commercial bulk lots of dried figs suspected of aflatoxin contamination. Two 55 g test portions were taken from each comminuted laboratory sample using water-slurry comminution methods. Finally, two aliquots from the test portion/solvent blend were analysed for both aflatoxin B1 and total aflatoxins. The total variance associated with testing dried figs for aflatoxins was measured and partitioned into sampling, sample preparation and analytical variance components (total variance is equal to the sum of the sampling variance, sample preparation variance, and analytical variance). Each variance component increased as aflatoxin concentration increased. Using regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation and analytical variances when testing dried figs for aflatoxins. The regression equations were modified to estimate the variances for any sample size, test portion size, and number of analyses for a specific lot aflatoxin concentration. When using the above aflatoxin test procedure to sample a fig lot at 10 μg/kg total aflatoxins, the sampling, sample preparation, analytical, and total variances were 47.20, 0.29, 0.13, and 47.62, respectively. The sampling, sample preparation, and analytical steps accounted for 99.1, 0.6, and 0.3% of the total variance, respectively. For the aflatoxin test procedure used in this study, the sampling step is the largest source of variability.}, number={1}, journal={WORLD MYCOTOXIN JOURNAL}, author={Ozer, H. and Basegmez, H. I. Oktay and Whitaker, T. B. and Slate, A. B. and Giesbrecht, F. G.}, year={2017}, pages={31–40} } @article{ozer_basegmez_whitaker_slate_giesbrecht_2017, title={Sampling dried figs for aflatoxin - Part II: effect of sampling plan design on reducing the risk of misclassifying lots}, volume={10}, ISSN={["1875-0796"]}, DOI={10.3920/wmj2016.2127}, abstractNote={Because aflatoxin limits vary widely among regulating countries, the Codex Committee on Contaminants in Foods (CCCF) began work in 2006 to harmonise maximum levels (MLs) and sampling plans for aflatoxin in dried figs. Studies were developed to measure the variability and distribution among replicated sample aflatoxin test results taken from the same aflatoxin contaminated lot of dried figs so that a model could be developed to evaluate the risk of misclassifying lots of dried figs by aflatoxin sampling plan designs. The model was then be used by the CCCF electronic working group (eWG) to recommend MLs and aflatoxin sampling plan designs to the full CCCF membership for lots traded in the export market. Sixteen 10 kg samples were taken from each of 20 dried fig lots with varying levels of contamination. The observed aflatoxin distribution among the 16-aflatoxin sample test results was compared to the normal, lognormal, compound gamma, and negative binomial distributions. The negative binomial distribution was selected to model aflatoxin distribution among sample test results because it gave acceptable fits to observed aflatoxin distributions among sample test results taken from the same contaminated lot. Using the negative binomial distribution, a computer model was developed to show the effect of the number and size of samples and the accept/reject limits on the chances of rejecting good lots (seller's risk) and accepting bad lots (buyer's risk). The information was shared with the CCCF eWG and in March 2012, the 6th session of CCCF adopted at step 5/8 an aflatoxin sampling plan where three 10 kg samples must all test less than an ML of 10 µg/kg total aflatoxins to accept a dried fig lot. The 35th Session of the Codex Alimentarius Commission met in July 2012 and adopted the CCCF recommendations for the ML and the sampling plan as an official Codex standard.}, number={2}, journal={WORLD MYCOTOXIN JOURNAL}, author={Ozer, H. and Basegmez, H. I. Oktay and Whitaker, T. B. and Slate, A. B. and Giesbrecht, F. G.}, year={2017}, pages={99–109} } @article{whitaker_slate_nowicki_giesbrecht_2016, title={Variability and distribution among sample test results when sampling unprocessed wheat lots for ochratoxin A}, volume={9}, ISSN={["1875-0796"]}, DOI={10.3920/wmj2015.1970}, abstractNote={In 2008, Health Canada announced it was considering the establishment of maximum levels for ochratoxin A (OTA) in unprocessed wheat, oats, and their products. The Canada Grains Council and Canadian National Millers Association initiated two studies to measure the variability and distribution among sample test results for unprocessed wheat and oats so that scientifically based OTA sampling plans could be designed to meet regulatory and industry requirements. Sampling statistics related to detecting OTA in oats has been published. 54 OTA contaminated wheat lots representing three wheat classes were identified for the sampling study. Each lot was sampled according to a nested experimental protocol where sixteen 2-kg laboratory samples were taken from each lot, multiple 5-g test portions were taken from each comminuted 2-kg laboratory sample, and multiple OTA measurements were made on each test portion using liquid chromatography. The sampling, sample preparation, and analytical variances associated with each step of the OTA test procedure were found to be a function of OTA concentration and regression equations were developed to predict the functional relationships between variance and OTA concentration. When sampling a wheat lot containing 5 µg/kg OTA with an OTA test procedure consisting of a sampling step employing a single 2-kg laboratory sample, sample preparation step employing a single 100-g test portion, and an analytical step that used liquid chromatography to quantify OTA, the sampling step accounted for 95.3% of the total variability. The observed OTA distribution among the 16 OTA sample results was found to be positively skewed and the negative binomial distribution was selected to model the OTA distribution among sample test results. The sampling statistics were incorporated into the FAO Mycotoxin Sampling Tool and the chances of rejecting good lots and accepting bad lots were calculated for various sampling plan designs.}, number={2}, journal={WORLD MYCOTOXIN JOURNAL}, author={Whitaker, T. B. and Slate, A. B. and Nowicki, T. W. and Giesbrecht, F. G.}, year={2016}, pages={163–178} }