@article{tsai_pillai_ganeshan_saeed_gao_duin_augustyn_balke_2023, title={Effect of Electrode/Electrolyte Coupling on Birnessite (delta-MnO2) Mechanical Response and Degradation}, volume={15}, ISSN={["1944-8252"]}, url={https://doi.org/10.1021/acsami.3c02055}, DOI={10.1021/acsami.3c02055}, abstractNote={Understanding the deformation of energy storage electrodes at a local scale and its correlation to electrochemical performance is crucial for designing effective electrode architectures. In this work, the effect of electrolyte cation and electrode morphology on birnessite (δ-MnO2) deformation during charge storage in aqueous electrolytes was investigated using a mechanical cyclic voltammetry approach via operando atomic force microscopy (AFM) and molecular dynamics (MD) simulation. In both K2SO4 and Li2SO4 electrolytes, the δ-MnO2 host electrode underwent expansion during cation intercalation, but with different potential dependencies. When intercalating Li+, the δ-MnO2 electrode presents a nonlinear correlation between electrode deformation and electrode height, which is morphologically dependent. These results suggest that the stronger cation-birnessite interaction is the reason for higher local stress heterogeneity when cycling in Li2SO4 electrolyte, which might be the origin of the pronounced electrode degradation in this electrolyte.}, number={21}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Tsai, Wan-Yu and Pillai, Shelby B. B. and Ganeshan, Karthik and Saeed, Saeed and Gao, Yawei and Duin, Adri C. T. and Augustyn, Veronica and Balke, Nina}, year={2023}, month={May}, pages={26120–26127} } @article{gittins_chen_arnold_augustyn_balducci_brousse_frackowiak_gomez-romero_kanwade_koeps_et al._2023, title={Interlaboratory study assessing the analysis of supercapacitor electrochemistry data}, volume={585}, ISSN={["1873-2755"]}, DOI={10.1016/j.jpowsour.2023.233637}, abstractNote={Supercapacitors are fast-charging energy storage devices of great importance for developing robust and climate-friendly energy infrastructures for the future. Research in this field has seen rapid growth in recent years, therefore consistent reporting practices must be implemented to enable reliable comparison of device performance. Although several studies have highlighted the best practices for analysing and reporting data from such energy storage devices, there is yet to be an empirical study investigating whether researchers in the field are correctly implementing these recommendations, and which assesses the variation in reporting between different laboratories. Here we address this deficit by carrying out the first interlaboratory study of the analysis of supercapacitor electrochemistry data. We find that the use of incorrect formulae and researchers having different interpretations of key terminologies are major causes of variability in data reporting. Furthermore we highlight the more significant variation in reported results for electrochemical profiles showing non-ideal capacitive behaviour. From the insights gained through this study, we make additional recommendations to the community to help ensure consistent reporting of performance metrics moving forward.}, journal={JOURNAL OF POWER SOURCES}, author={Gittins, Jamie W. and Chen, Yuan and Arnold, Stefanie and Augustyn, Veronica and Balducci, Andrea and Brousse, Thierry and Frackowiak, Elzbieta and Gomez-Romero, Pedro and Kanwade, Archana and Koeps, Lukas and et al.}, year={2023}, month={Nov} } @article{saeed_fortunato_ganeshan_duin_augustyn_2021, title={Decoupling Proton and Cation Contributions to Capacitive Charge Storage in Birnessite in Aqueous Electrolytes}, volume={8}, ISSN={["2196-0216"]}, DOI={10.1002/celc.202100992}, abstractNote={Abstract}, number={22}, journal={CHEMELECTROCHEM}, author={Saeed, Saeed and Fortunato, Jenelle and Ganeshan, Karthik and Duin, Adri C. T. and Augustyn, Veronica}, year={2021}, month={Nov}, pages={4371–4379} } @article{boyd_ganeshan_tsai_wu_saeed_jiang_balke_duin_augustyn_2021, title={Effects of interlayer confinement and hydration on capacitive charge storage in birnessite}, ISSN={["1476-4660"]}, url={https://doi.org/10.1038/s41563-021-01066-4}, DOI={10.1038/s41563-021-01066-4}, abstractNote={Nanostructured birnessite exhibits high specific capacitance and nearly ideal capacitive behaviour in aqueous electrolytes, rendering it an important electrode material for low-cost, high-power energy storage devices. The mechanism of electrochemical capacitance in birnessite has been described as both Faradaic (involving redox) and non-Faradaic (involving only electrostatic interactions). To clarify the capacitive mechanism, we characterized birnessite's response to applied potential using ex situ X-ray diffraction, electrochemical quartz crystal microbalance, in situ Raman spectroscopy and operando atomic force microscope dilatometry to provide a holistic understanding of its structural, gravimetric and mechanical responses. These observations are supported by atomic-scale simulations using density functional theory for the cation-intercalated structure of birnessite, ReaxFF reactive force field-based molecular dynamics and ReaxFF-based grand canonical Monte Carlo simulations on the dynamics at the birnessite-water-electrolyte interface. We show that capacitive charge storage in birnessite is governed by interlayer cation intercalation. We conclude that the intercalation appears capacitive due to the presence of nanoconfined interlayer structural water, which mediates the interaction between the intercalated cation and the birnessite host and leads to minimal structural changes.}, journal={NATURE MATERIALS}, author={Boyd, Shelby and Ganeshan, Karthik and Tsai, Wan-Yu and Wu, Tao and Saeed, Saeed and Jiang, De-en and Balke, Nina and Duin, Adri C. T. and Augustyn, Veronica}, year={2021}, month={Aug} } @article{saeed_boyd_tsai_wang_balke_augustyn_2021, title={Understanding electrochemical cation insertion into prussian blue from electrode deformation and mass changes}, volume={57}, ISSN={["1364-548X"]}, url={https://doi.org/10.1039/D1CC01681D}, DOI={10.1039/d1cc01681d}, abstractNote={Alkali ion insertion into Prussian blue from aqueous electrolytes is characterized with operando AFM and EQCM, showing coupling of current with deformation and mass change rates.}, number={55}, journal={CHEMICAL COMMUNICATIONS}, publisher={Royal Society of Chemistry (RSC)}, author={Saeed, Saeed and Boyd, Shelby and Tsai, Wan-Yu and Wang, Ruocun and Balke, Nina and Augustyn, Veronica}, year={2021}, month={Jul}, pages={6744–6747} }