@article{sheridan_nellenbach_pandit_byrnes_hardy_lutz_moiseiwitsch_scull_mihalko_levy_et al._2024, title={Clot-Targeted Nanogels for Dual-Delivery of AntithrombinIII and Tissue Plasminogen Activator to Mitigate Disseminated Intravascular Coagulation Complications}, volume={6}, ISSN={["1936-086X"]}, DOI={10.1021/acsnano.4c00162}, abstractNote={Disseminated intravascular coagulation (DIC) is a pathologic state that follows systemic injury and other diseases. Often a complication of sepsis or trauma, DIC causes coagulopathy associated with paradoxical thrombosis and hemorrhage. DIC upregulates the thrombotic pathways while simultaneously downregulating the fibrinolytic pathways that cause excessive fibrin deposition, microcirculatory thrombosis, multiorgan dysfunction, and consumptive coagulopathy with excessive bleeding. Given these opposing disease phenotypes, DIC management is challenging and includes treating the underlying disease and managing the coagulopathy. Currently, no therapies are approved for DIC. We have developed clot-targeted therapeutics that inhibit clot polymerization and activate clot fibrinolysis to manage DIC. We hypothesize that delivering both an anticoagulant and a fibrinolytic agent directly to clots will inhibit active clot polymerization while also breaking up pre-existing clots; therefore, reversing consumptive coagulopathy and restoring hemostatic balance. To test this hypothesis, we single- and dual-loaded fibrin-specific nanogels (FSNs) with antithrombinIII (ATIII) and/or tissue plasminogen activator (tPA) and evaluated their clot preventing and clot lysing abilities in vitro and in a rodent model of DIC. In vivo, single-loaded ATIII-FSNs decreased fibrin deposits in DIC organs and reduced blood loss when DIC rodents were injured. We also observed that the addition of tPA in dual-loaded ATIII-tPA-FSNs intensified the antithrombotic and fibrinolytic mechanisms, which proved advantageous for clot lysis and restoring platelet counts. However, the addition of tPA may have hindered wound healing capabilities when an injury was introduced. Our data supports the benefits of delivering both anticoagulants and fibrinolytic agents directly to clots to reduce the fibrin load and restore hemostatic balance in DIC.}, journal={ACS NANO}, author={Sheridan, Anastasia and Nellenbach, Kimberly and Pandit, Sanika and Byrnes, Elizabeth and Hardy, Grace and Lutz, Halle and Moiseiwitsch, Nina and Scull, Grant and Mihalko, Emily and Levy, Jerrold and et al.}, year={2024}, month={Jun} } @article{scull_aligwekwe_rey_koch_nellenbach_sheridan_pandit_sollinger_pierce_flick_et al._2024, title={Fighting fibrin with fibrin: Vancomycin delivery into coagulase-mediated Staphylococcus aureus biofilms via fibrin-based nanoparticle binding}, volume={6}, ISSN={["1552-4965"]}, DOI={10.1002/jbm.a.37760}, abstractNote={Abstract Staphylococcus aureus skin and soft tissue infection is a common ailment placing a large burden upon global healthcare infrastructure. These bacteria are growing increasingly recalcitrant to frontline antimicrobial therapeutics like vancomycin due to the prevalence of variant populations such as methicillin‐resistant and vancomycin‐resistant strains, and there is currently a dearth of novel antibiotics in production. Additionally, S. aureus has the capacity to hijack the host clotting machinery to generate fibrin‐based biofilms that confer protection from host antimicrobial mechanisms and antibiotic‐based therapies, enabling immune system evasion and significantly reducing antimicrobial efficacy. Emphasis is being placed on improving the effectiveness of therapeutics that are already commercially available through various means. Fibrin‐based nanoparticles (FBNs) were developed and found to interact with S. aureus through the clumping factor A (ClfA) fibrinogen receptor and directly integrate into the biofilm matrix. FBNs loaded with antimicrobials such as vancomycin enabled a targeted and sustained release of antibiotic that increased drug contact time and reduced the therapeutic dose required for eradicating the bacteria, both in vitro and in vivo. Collectively, these findings suggest that FBN‐antibiotic delivery may be a novel and potent therapeutic tool for the treatment of S. aureus biofilm infections.}, journal={JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A}, author={Scull, Grant and Aligwekwe, Adrian and Rey, Ysabel and Koch, Drew and Nellenbach, Kimberly and Sheridan, Ana and Pandit, Sanika and Sollinger, Jennifer and Pierce, Joshua G. and Flick, Matthew J. and et al.}, year={2024}, month={Jun} } @article{nellenbach_mihalko_nandi_koch_shetty_moretti_sollinger_moiseiwitsch_sheridan_pandit_et al._2024, title={Ultrasoft platelet-like particles stop bleeding in rodent and porcine models of trauma}, volume={16}, ISSN={["1946-6242"]}, DOI={10.1126/scitranslmed.adi4490}, abstractNote={Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly ( N -isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting.}, number={742}, journal={SCIENCE TRANSLATIONAL MEDICINE}, author={Nellenbach, Kimberly and Mihalko, Emily and Nandi, Seema and Koch, Drew W. and Shetty, Jagathpala and Moretti, Leandro and Sollinger, Jennifer and Moiseiwitsch, Nina and Sheridan, Ana and Pandit, Sanika and et al.}, year={2024}, month={Apr} } @article{chee_mihalko_nellenbach_sollinger_huang_hon_pandit_cheng_brown_2023, title={Wound‐triggered shape change microgels for the development of enhanced biomimetic function platelet‐like particles}, volume={112}, ISSN={1549-3296 1552-4965}, url={http://dx.doi.org/10.1002/jbm.a.37625}, DOI={10.1002/jbm.a.37625}, abstractNote={Abstract}, number={4}, journal={Journal of Biomedical Materials Research Part A}, publisher={Wiley}, author={Chee, Eunice and Mihalko, Emily and Nellenbach, Kimberly and Sollinger, Jennifer and Huang, Ke and Hon, Mason and Pandit, Sanika and Cheng, Ke and Brown, Ashley}, year={2023}, month={Oct}, pages={613–624} }