Srikanth Patala Fancher, C. M., Burch, M. J., Patala, S., & Dickey, E. C. (2022, January 4). Implications of gnomonic distortion on electron backscatter diffraction and transmission Kikuchi diffraction. JOURNAL OF MICROSCOPY, Vol. 1. https://doi.org/10.1111/jmi.13077 Kadambi, S. B., Abdeljawad, F., & Patala, S. (2020). A phase-field approach for modeling equilibrium solute segregation at the interphase boundary in binary alloys. Computational Materials Science, 175, 109533. https://doi.org/10.1016/j.commatsci.2020.109533 Guziewski, M., Banadaki, A. D., Patala, S., & Coleman, S. P. (2020). Application of Monte Carlo techniques to grain boundary structure optimization in silicon and silicon-carbide. Computational Materials Science, 182, 109771. https://doi.org/10.1016/j.commatsci.2020.109771 Kadambi, S. B., Abdeljawad, F., & Patala, S. (2020). Interphase boundary segregation and precipitate coarsening resistance in ternary alloys: An analytic phase-field model describing chemical effects. Acta Materialia, 197, 283–299. https://doi.org/10.1016/j.actamat.2020.06.052 Chowdhury, S., Zhuang, H., Coleman, S., Patala, S., & Bair, J. (2020, September). Quantum Materials for Energy-Efficient Computing. JOM, Vol. 72, pp. 3147–3148. https://doi.org/10.1007/s11837-020-04293-3 Chowdhury, S., Zhuang, H., Coleman, S., Patala, S., & Bair, J. (2020, December). Quantum Materials for Energy-Efficient Computing (vol 72, pg 3147, 2020). JOM, Vol. 72, pp. 4721–4721. https://doi.org/10.1007/s11837-020-04431-x Thomas, S. L., & Patala, S. (2020). Vacancy diffusion in multi-principal element alloys: The role of chemical disorder in the ordered lattice. Acta Materialia, 196, 144–153. https://doi.org/10.1016/j.actamat.2020.06.022 Maldonis, J. J., Banadaki, A. D., Patala, S., & Voyles, P. M. (2019). Short-range order structure motifs learned from an atomistic model of a Zr50Cu45Al5 metallic glass. ACTA MATERIALIA, 175, 35–45. https://doi.org/10.1016/j.actamat.2019.05.002 Patala, S. (2019). Understanding grain boundaries - The role of crystallography, structural descriptors and machine learning. COMPUTATIONAL MATERIALS SCIENCE, 162, 281–294. https://doi.org/10.1016/j.commatsci.2019.02.047 Banadaki, A. D., Tschopp, M. A., & Patala, S. (2018). An efficient Monte Carlo algorithm for determining the minimum energy structures of metallic grain boundaries. COMPUTATIONAL MATERIALS SCIENCE, 155, 466–475. https://doi.org/10.1016/j.commatsci.2018.09.017 Banadaki, A. D., & Patala, S. (2017). A three-dimensional polyhedral unit model for grain boundary structure in fcc metals. NPJ COMPUTATIONAL MATERIALS, 3(1). https://doi.org/10.1038/s41524-017-0016-0 Patala, S. (2017, March). Approximating coincidence - turning a new page for bicrystallography. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, Vol. 73, pp. 85–86. https://doi.org/10.1107/s2053273317003321 Burch, M. J., Fancher, C. M., Patala, S., De Graef, M., & Dickey, E. C. (2017). Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations. Ultramicroscopy, 173, 47–51. https://doi.org/10.1016/j.ultramic.2016.11.013 Kadambi, S. B., & Patala, S. (2017). Thermodynamic stabilization of precipitates through interface segregation: Chemical effects. PHYSICAL REVIEW MATERIALS, 1(4). https://doi.org/10.1103/physrevmaterials.1.043604 Seita, M., Volpi, M., Patala, S., McCue, I., Schuh, C. A., Diamanti, M. V., … Demkowicz, M. J. (2016). A high-throughput technique for determining grain boundary character non-destructively in microstructures with through-thickness grains. Npj Computational Materials, 2(1). https://doi.org/10.1038/NPJCOMPUMATS.2016.16 Banadaki, A. D., & Patala, S. (2016). A simple faceting model for the interfacial and cleavage energies of Sigma 3 grain boundaries in the complete boundary plane orientation space. COMPUTATIONAL MATERIALS SCIENCE, 112, 147–160. https://doi.org/10.1016/j.commatsci.2015.09.062 Burch, M. J., Fancher, C. M., Patala, S., & Dickey, E. C. (2016). Imaging 180° Polarization Reversal in Ferroelectric Oxides with Electron Backscatter Diffraction. Microscopy and Microanalysis, 22(S3), 1822–1823. https://doi.org/10.1017/S1431927616009958 Banadaki, A. D., & Patala, S. (2015). An efficient algorithm for computing the primitive bases of a general lattice plane. J Appl Cryst, 48(2), 585–588. https://doi.org/10.1107/s1600576715004446 Homer, E. R., Patala, S., & Priedeman, J. L. (2015). Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships. SCIENTIFIC REPORTS, 5. https://doi.org/10.1038/srep15476 Patala, S., Marks, L. D., & Cruz, M. O. (2013). Elastic Strain Energy Effects in Faceted Decahedral Nanoparticles. Journal of Physical Chemistry C, 117(3), 1485–1494. https://doi.org/10.1021/jp310045g Patala, S., & Schuh, C. A. (2013). Representation of single-axis grain boundary functions. Acta Materialia, 61(8), 3068–3081. https://doi.org/10.1016/j.actamat.2013.01.067 Patala, S., & Schuh, C. A. (2013). Symmetries in the representation of grain boundary-plane distributions. Philosophical Magazine, 93(5), 524–573. https://doi.org/10.1080/14786435.2012.722700 Patala, S., Marks, L. D., & Cruz, M. O. (2013). Thermodynamic Analysis of Multiply Twinned Particles: Surface Stress Effects. J. Phys. Chem. Lett., 4(18), 3089–3094. https://doi.org/10.1021/jz401496d Patala, S., Mason, J. K., & Schuh, C. A. (2012). Improved representations of misorientation information for grain boundary science and engineering. Progress in Materials Science, 57(8), 1383–1425. https://doi.org/10.1016/j.pmatsci.2012.04.002 Patala, S., & Schuh, C. A. (2011). A continuous and one-to-one coloring scheme for misorientations. Acta Materialia, 59(2), 554–562. https://doi.org/10.1016/j.actamat.2010.09.058 Patala, S., & Schuh, C. A. (2011). The topology of homophase misorientation spaces. Philosophical Magazine, 91(10), 1489–1508. https://doi.org/10.1080/14786435.2010.541169 Patala, S., & Schuh, C. A. (2010). Topology of Homophase Grain Boundaries in Two-Dimensional Crystals: The Role of Grain Exchange Symmetry. Cmc-Computers Materials & Continua, 17(1), 1–17.