@article{schkoda_horman_witchey_armour_nelson_gaeta_scott_patisaul_2024, title={Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components}, volume={105}, ISSN={["1872-9711"]}, DOI={10.1016/j.neuro.2024.09.001}, abstractNote={Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.}, journal={NEUROTOXICOLOGY}, author={Schkoda, Stacy and Horman, Brian and Witchey, Shannah and Armour, Genevieve St. and Nelson, Mason and Gaeta, Emily and Scott, Madeline and Patisaul, Heather B.}, year={2024}, month={Dec}, pages={111–120} } @article{schkoda_horman_witchey_jansson_macari_patisaul_2023, title={Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat}, volume={5}, ISSN={["2673-3080"]}, DOI={10.3389/ftox.2023.1216388}, abstractNote={Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown.Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified.Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs.Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.}, journal={FRONTIERS IN TOXICOLOGY}, author={Schkoda, Stacy and Horman, Brian and Witchey, Shannah K. and Jansson, Anton and Macari, Soraia and Patisaul, Heather B.}, year={2023}, month={Jul} } @article{kassotis_lefauve_chiang_knuth_schkoda_kullman_2022, title={Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish}, volume={10}, DOI={10.3390/toxics10020099}, abstractNote={Alkylphenol polyethoxylates (APEOs), such as nonylphenol ethoxylates (NPEOs), are high-production-volume surfactants used in laundry detergents, hard-surface cleaners, pesticide formulations, textile production, oils, paints, and other products. NPEOs comprise −80% of the total production of APEOs and are widely reported across diverse environmental matrices. Despite a growing push for replacement products, APEOs continue to be released into the environment through wastewater at significant levels. Research into related nonionic surfactants from varying sources has reported metabolic health impacts, and we have previously demonstrated that diverse APEOs and alcohol polyethoxylates promote adipogenesis in the murine 3T3-L1 pre-adipocyte model. These effects appeared to be independent of the base alkylphenol and related to the ethoxylate chain length, though limited research has evaluated NPEO exposures in animal models. The goals of this study were to assess the potential of NPEOs to promote adiposity (Nile red fluorescence quantification) and alter growth and/or development (toxicity, length, weight, and energy expenditure) of developmentally exposed zebrafish (Danio rerio). We also sought to expand our understanding of the ability to promote adiposity through evaluation in human mesenchymal stem cells. Herein, we demonstrated consistent adipogenic effects in two separate human bone-marrow-derived mesenchymal stem cell models, and that nonylphenol and its ethoxylates promoted weight gain and increased adipose deposition in developmentally exposed zebrafish. Notably, across both cell and zebrafish models we report increasing adipogenic/obesogenic activity with increasing ethoxylate chain lengths up to maximums around NPEO-6 and then decreasing activity with the longest ethoxylate chain lengths. This research suggests metabolic health concerns for these common obesogens, suggesting further need to assess molecular mechanisms and better characterize environmental concentrations for human health risk assessments.}, number={2}, journal={Toxics}, author={Kassotis, Christopher D. and LeFauve, Matthew K. and Chiang, Yu-Ting Tiffany and Knuth, Megan M. and Schkoda, Stacy and Kullman, Seth W.}, year={2022}, month={Feb}, pages={99} } @article{kassotis_lefauve_chiang_knuth_schkoda_kullman_2022, title={Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish (vol 10, 99, 2022)}, volume={10}, ISSN={["2305-6304"]}, DOI={10.3390/toxics10070345}, abstractNote={In the original publication [...]}, number={7}, journal={TOXICS}, author={Kassotis, Christopher D. and LeFauve, Matthew K. and Chiang, Yu-Ting Tiffany and Knuth, Megan M. and Schkoda, Stacy and Kullman, Seth W.}, year={2022}, month={Jul} }