@article{oh_mendola_choe_min_lavoie_sripada_williams_lee_yigzaw_seay_et al._2023, title={Identification and characterization of CHO host-cell proteins in monoclonal antibody bioprocessing}, volume={10}, ISSN={["1097-0290"]}, DOI={10.1002/bit.28568}, abstractNote={Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Oh, Young Hoon and Mendola, Kerri M. and Choe, Leila H. and Min, Lie and Lavoie, Ashton R. and Sripada, Sobhana A. and Williams, Taufika Islam and Lee, Kelvin H. and Yigzaw, Yinges and Seay, Alexander and et al.}, year={2023}, month={Oct} } @article{sripada_elhanafi_collins_williams_linova_woodley_boi_menegatti_2023, title={Pseudo-affinity capture of K. phaffii host cell proteins in flow-through mode: Purification of protein therapeutics and proteomic study}, volume={326}, ISSN={["1873-3794"]}, DOI={10.1016/j.seppur.2023.124777}, abstractNote={K. phaffii is a versatile expression system that is increasingly utilized to produce biological therapeutics – including enzymes, engineered antibodies, and gene-editing tools – that feature multiple subunits and complex post-translational modifications. Two major roadblocks limit the adoption of K. phaffii in industrial biomanufacturing: its proteome, while known, has not been linked to downstream process operations and detailed knowledge is missing on problematic host cell proteins (HCPs) that endanger patient safety or product stability. Furthermore, the purification toolbox has not evolved beyond the capture of monospecific antibodies, and few solutions are available for engineered antibody fragments and other protein therapeutics. To unlock the potential of yeast-based biopharmaceutical manufacturing, this study presents the development and performance validation of a novel adsorbent – PichiaGuard – functionalized with peptide ligands that target the whole spectrum of K. phaffii HCPs and designed for protein purification in flow-through mode. The PichiaGuard adsorbent features high HCP binding capacity (∼25 g per liter of resin) and successfully purified a monoclonal antibody and an ScFv fragment from clarified K. phaffii harvests, affording >300-fold removal of HCPs and high product yields (70 – 80%). Notably, PichiaGuard outperformed commercial ion exchange and mixed-mode resins without salt gradients or optimization in removing high-risk HCPs – including aspartic proteases, ribosomal subunits, and other peptidases – thus demonstrating its value in modern biopharmaceutical processing.}, journal={SEPARATION AND PURIFICATION TECHNOLOGY}, author={Sripada, Sobhana A. and Elhanafi, Driss and Collins, Leonard B. and Williams, Taufika I. and Linova, Marina Y. and Woodley, John M. and Boi, Cristiana and Menegatti, Stefano}, year={2023}, month={Dec} } @article{fan_sripada_pham_linova_woodley_menegatti_boi_carbonell_2023, title={Purification of a monoclonal antibody using a novel high-capacity multimodal cation exchange nonwoven membrane}, volume={317}, ISSN={["1873-3794"]}, DOI={10.1016/j.seppur.2023.123920}, abstractNote={A high-capacity, multimodal cation exchange (MMC) chromatographic membrane was developed by conjugating a multimodal ligand – 2-mercaptopyridine-3-carboxylic acid (MPCA) – on a polybutylene terepthalate (PBT) nonwoven fabric. The membrane features an equilibrium binding capacity of ≈ 1000 mg of human polyclonal IgG (IgG) per g of membrane and dynamic binding capacities (DBC10%) ranging from 77.5 to 115.1 mg/mL (residence times of 1 and 5 min, respectively); these values are 2-to-3-fold higher than those of commercial MMC adsorbents. The effects of buffer composition, pH, conductivity on the binding behavior of the MMC-MPCA membrane were investigated in detail. As a moderate cation exchange binder, MPCA enables effective protein elution using buffers with mild pH (8.0–9.0) and conductivity (≈13 mS/cm), thus circumventing the harsh conditions often needed in multimodal chromatography. The MMC-MPCA membrane was evaluated for product capture in bind-and-elute mode on a Chinese hamster ovary (CHO) cell culture harvest containing therapeutic monoclonal antibodies, using commercial multimodal (Capto MMC and MX-Trp-650M) and affinity (AF-rProtein A HC-650F) resins as controls. The MMC-MPCA membrane outperformed the multimodal resins in terms of binding capacity as well as clearance of host cell proteins (HCPs) and aggregates. The membrane was then evaluated by polishing the mAb from a Protein A eluate in bind-and-elute mode. The MMC-MPCA membrane reduced the level of high molecular weight components from 11% to 4% and the HCP content from 1319.7 ppm to 48.7 ppm (LRV of 1.4). Most notably, proteomics analysis of the product demonstrated the clearance of a significant fraction of persistent, high-risk HCPs from the Protein A eluate.}, journal={SEPARATION AND PURIFICATION TECHNOLOGY}, author={Fan, Jinxin and Sripada, Sobhana A. and Pham, Dan N. and Linova, Marina Y. and Woodley, John M. and Menegatti, Stefano and Boi, Cristiana and Carbonell, Ruben G.}, year={2023}, month={Jul} } @article{sripada_chu_williams_teten_mosley_carbonell_lenhoff_cramer_bill_yigzaw_et al._2022, title={Towards continuous mAb purification: Clearance of host cell proteins from CHO cell culture harvests via "flow-through affinity chromatography" using peptide-based adsorbents}, volume={119}, ISSN={["1097-0290"]}, url={https://doi.org/10.1002/bit.28096}, DOI={10.1002/bit.28096}, abstractNote={The growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography. This study describes their integration into LigaGuard™, an affinity adsorbent featuring an equilibrium binding capacity of ~30 mg of HCPs per mL of resin as well as dynamic capacities up to 16 and 22 mg/ml at 1- and 2-min residence times, respectively. When evaluated against cell culture harvests with different mAb and HCP titers and properties, LigaGuard™ afforded high HCP clearance, with logarithmic removal values (LRVs) up to 1.5, and mAb yield above 90%. Proteomic analysis of the effluents confirmed the removal of high-risk HCPs, including cathepsins, histones, glutathione-S transferase, and lipoprotein lipases. Finally, combining LigaGuard™ for HCP removal with affinity adsorbents for product capture afforded a global mAb yield of 85%, and HCP and DNA LRVs > 4.}, number={7}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, publisher={Wiley}, author={Sripada, Sobhana Alekhya and Chu, Wenning and Williams, Taufika Islam and Teten, Matthew A. and Mosley, Brian J. and Carbonell, Ruben G. and Lenhoff, Abraham M. and Cramer, Steven M. and Bill, Jerome and Yigzaw, Yinges and et al.}, year={2022}, month={Apr} } @article{sternisha_mukherjee_alex_chaney_barkalifa_wan_lee_rico-jimenez_zurauskas_spillman_et al._2021, title={Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy}, ISSN={["1860-7314"]}, DOI={10.1002/biot.202000629}, abstractNote={Abstract Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time‐consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day‐to‐day changes in the cellular microenvironment need further in‐depth characterization. In this study, two‐photon fluorescence lifetime imaging microscopy (2P‐FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom‐built multimodal microscope with two‐photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale‐up. To our knowledge, this is the first study to use FLIM as a label‐free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.}, journal={BIOTECHNOLOGY JOURNAL}, author={Sternisha, Shawn M. and Mukherjee, Prabuddha and Alex, Aneesh and Chaney, Eric J. and Barkalifa, Ronit and Wan, Boyong and Lee, Jang Hyuk and Rico-Jimenez, Jose and Zurauskas, Mantas and Spillman, Darold R., Jr. and et al.}, year={2021}, month={Jun} } @article{chu_sripada_reese_bhandari_adams_sly_crapanzano_menegatti_2021, title={Purification of polyclonal immunoglobulin G from human serum using peptide-based adsorbents}, volume={10}, ISSN={["1547-5905"]}, DOI={10.1002/aic.17482}, abstractNote={Abstract This study presents the chromatographic purification of immunoglobulin G (IgG) from human plasma using a two‐column process integrating the peptide‐based adsorbents LigaGuard™, which captures non‐Ig plasma proteins in flow‐through mode, and LigaTrap™, which isolates IgG in bind‐and‐elute. Buffer composition and column loading were optimized for both adsorbents. Two process configurations were evaluated. In the first design, plasma was fed to a LigaGuard™ column to capture plasma proteins, the effluent was loaded on the LigaTrap™ column, and the bound IgG was eluted with 63.8% global recovery and 99.7% purity; in comparison, Protein G agarose afforded approximately 67% recovery and 97.2% purity. In the alternative design, the LigaGuard™ column was utilized to polish the LigaTrap™ elution stream, affording 82.3% global recovery and 98.8% purity. Collectively, these results demonstrate the potential of a fully chromatographic process for purifying polyclonal IgG from plasma feedstocks.}, journal={AICHE JOURNAL}, author={Chu, Wenning and Sripada, Sobhana A. and Reese, Hannah R. and Bhandari, Dipendra and Adams, Augustus and Sly, Jae and Crapanzano, Michael and Menegatti, Stefano}, year={2021}, month={Oct} }