@article{pires_williams_daystar_sagues_lan_venditti_2024, title={Evaluating Cotton Apparel with Dynamic Life Cycle Assessment: The Climate Benefits of Temporary Biogenic Carbon Storage}, volume={19}, ISSN={["1930-2126"]}, DOI={10.15376/biores.19.3.5074-5095}, abstractNote={Static life cycle assessment (LCA) methodologies fail to consider the temporal profiles of system inputs and outputs (including emission timing), such that they underestimate the benefits of temporarily stored biogenic carbon in bioproducts, such as cotton. This research focuses on greenhouse gas emission timing and applies dynamic emission accounting to the life cycle of cotton woven pants. The significance of temporary biogenic carbon storage and emission timing is illustrated by converting the 2017 Cotton Incorporated static LCA to a dynamic model using the Dynamic Carbon Footprinter (baseline scenario). A reduction in cumulative radiative forcing for dynamic relative to static modeling of 22%, 5%, and 2% are observed at 10-years, 30-years, and 100-years, respectively. Alternative scenarios analyzed include converting cotton woven pants at end of life to bioenergy, to compost, or to building insulation, an alternative cotton production scenario using regenerative agricultural practices, and two pants extended lifetime scenarios. The regenerative agricultural practice scenario provides reductions in cumulative impacts compared to the baseline scenario of 96%, 69%, and 105% after 10, 30, and 100-years, respectively. A 3x extension in the lifetime of pants provides a benefit in reduced cumulative impacts of 31%, 40%, and 41%, after 10, 30, and 100-years, respectively. This case study with cotton demonstrates that dynamic LCA is a useful tool for assessing the benefits of biobased products, and it allows for more nuanced analysis of reductions in climate impacts in both the short- and long-term time horizons.}, number={3}, journal={BIORESOURCES}, author={Pires, Steven T. and Williams, Allan and Daystar, Jesse and Sagues, William Joe and Lan, Kai and Venditti, Richard A.}, year={2024}, month={Aug}, pages={5074–5095} } @article{bayramova_pires_barnes_morgan_kurtz_daystar_2024, title={Sustainable Cotton Farming Trends: Leveraging Natural Resource Survey Insights for US Cotton Production}, volume={19}, ISSN={["1930-2126"]}, DOI={10.15376/biores.19.4.7279-7319}, abstractNote={Cotton cultivation in the United States is relevant globally, with the nation ranking among the top producers and exporters. This study examines conservation practice adoption trends and technological advancements in U.S. cotton production, focusing on sustainability and productivity. Efforts to improve cotton farming practices have reduced its environmental impacts, including decreased soil loss, water usage, and greenhouse gas emissions. Precision agriculture technologies have been instrumental in enhancing efficiency and reducing input costs, albeit with varying degrees of success. To gain deeper insights into cotton grower challenges and needs, a Natural Resource Survey was conducted in 2023 with 753 respondents. As a follow-up to the 2008 and 2015 surveys, the insights from this survey provide valuable data on grower practices and priorities, highlighting the increasing influence of climate change on cotton production. The findings underscore the importance of conservation agriculture and ongoing research to address grower concerns while improving production efficiency. Particularly noteworthy are the outcomes indicating an increase in cover crop adoption and a decrease in tillage practices, reflecting the industry’s commitment to sustainability. This study contributes to understanding the dynamics shaping the U.S. cotton industry and offers insights into the challenges and opportunities for continual improvement in U.S. cotton cultivation.}, number={4}, journal={BIORESOURCES}, author={Bayramova, Jeyran and Pires, Steven and Barnes, Ed and Morgan, Gaylon and Kurtz, Ryan and Daystar, Jesse}, year={2024}, month={Nov} } @article{kounina_daystar_chalumeau_devine_geyer_pires_sonar_venditti_boucher_2024, title={The global apparel industry is a significant yet overlooked source of plastic leakage}, volume={15}, ISSN={["2041-1723"]}, DOI={10.1038/s41467-024-49441-4}, abstractNote={Abstract Plastic pollution is a global environmental threat with potentially irreversible impacts on aquatic life, ecosystems, and human health. This study is a comprehensive assessment of the global apparel industry’s contribution to plastic pollution. It includes plastic leakage of packaging and end-of-life apparel waste in addition to fiber emissions during apparel production and use. We estimate that the apparel industry generated 8.3 [4.8–12.3] million tons (Mt) of plastic pollution in 2019, corresponding to 14% [5.5%–30%] of the estimated 60 Mt from all sectors. In this study, we demonstrate that the main source of plastic pollution from the apparel supply chain is synthetic clothing as mismanaged waste either in the country of its original use or in the countries receiving used apparel exports. A fundamental transformation of the apparel economy towards a circular framework and decreased synthetic apparel consumption is needed to tackle apparel-related plastic pollution.}, number={1}, journal={NATURE COMMUNICATIONS}, author={Kounina, Anna and Daystar, Jesse and Chalumeau, Sophie and Devine, Jon and Geyer, Roland and Pires, Steven T. and Sonar, Shreya Uday and Venditti, Richard A. and Boucher, Julien}, year={2024}, month={Jun} } @article{smith_zambrano_ankeny_daystar_pires_pawlak_venditti_2024, title={Aquatic Aerobic Biodegradation of Commonly Flushed Materials in Aerobic Wastewater Treatment Plant Solids, Seawater, and Lakewater}, volume={19}, ISSN={["1930-2126"]}, url={http://dx.doi.org/10.15376/biores.19.1.1150-1164}, DOI={10.15376/biores.19.1.1150-1164}, abstractNote={Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.}, number={1}, journal={BIORESOURCES}, author={Smith, Madilynn M. and Zambrano, Marielis and Ankeny, Mary and Daystar, Jesse and Pires, Steven and Pawlak, Joel and Venditti, Richard A.}, year={2024}, month={Feb}, pages={1150–1164} }