@article{xu_rios_wang_ham_choi_kim_park_2024, title={Process design and techno-economic analysis for the lignin oil solvent recovery and purification process}, volume={434}, ISSN={["1879-1786"]}, url={http://dx.doi.org/10.1016/j.jclepro.2023.139999}, DOI={10.1016/j.jclepro.2023.139999}, abstractNote={A technology to extract lignin oil from pretreated biomass has been developed for a cosmetic additive application (i.e., UV protection) through isopropyl alcohol without any catalyst. It was used for co-product lignin oil with XOS from a biorefinery process in this study. One of the key factors impacting economic feasibility is extraction solvent recovery, and it is important to design the process details based on techno-economic analysis. Therefore, this study has integrated lab experiments, process designs with Aspen Plus process simulations, and Excel-based techno-economic analysis to investigate the effect of solvent recovery on overall economics. Three options for solvent recovery (e.g., distillation, salting-out, and molecular sieve) have been explored. The salting-out method showed the best economic performance with an IRR of 33.6%, while the distillation method was 21.7% and the molecular sieve method was 16.7%. Key parameters are also identified by sensitivity analyses, which indicate the improvement potential for each case. This study has laid a foundation for lignin oil production studies, but its concept and approach can be applied to any solvent recycling in a biorefinery process, which is often neglected in lab-scale biorefinery studies.}, journal={JOURNAL OF CLEANER PRODUCTION}, author={Xu, Yiling and Rios, David Cruz and Wang, Song and Ham, Choonghyun and Choi, June-Ho and Kim, Hoyong and Park, Sunkyu}, year={2024}, month={Jan} }