@article{lu_fu_zhang_li_chen_zhu_yanilmaz_dirican_zhang_2015, title={Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors}, volume={273}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.09.130}, DOI={10.1016/j.jpowsour.2014.09.130}, abstractNote={Carbon nanofibers (CNFs), among various carbonaceous candidates for electric double-layer capacitor (EDLC) electrodes, draw extensive attention because their one-dimensional architecture offers both shortened electron pathways and high ion-accessible sites. Creating porous structures on CNFs yields larger surface area and enhanced capacitive performance. Herein, porous carbon nanofibers (PCNFs) were synthesized via centrifugal spinning of polyacrylonitrile (PAN)/poly(methyl methacrylate) (PMMA) solutions combined with thermal treatment and were used as binder-free EDLC electrodes. Three precursor fibers with PAN/PMMA weight ratios of 9/1, 7/3 and 5/5 were prepared and carbonized at 700, 800, and 900 °C, respectively. The highest specific capacitance obtained was 144 F g−1 at 0.1 A g−1 with a rate capability of 74% from 0.1 to 2 A g−1 by PCNFs prepared with PAN/PMMA weight ratio of 7/3 at 900 °C. These PCNFs also showed stable cycling performance. The present work demonstrates that PCNFs are promising EDLC electrode candidate and centrifugal spinning offers a simple, cost-effective strategy to produce PCNFs.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Lu, Yao and Fu, Kun and Zhang, Shu and Li, Ying and Chen, Chen and Zhu, Jiadeng and Yanilmaz, Meltem and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Jan}, pages={502–510} } @article{li_chen_fu_xue_zhao_zhang_hu_zhou_zhang_2014, title={Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries}, volume={254}, ISSN={["1872-7689"]}, url={https://publons.com/publon/26924681/}, DOI={10.1016/j.ssi.2013.10.063}, abstractNote={Alloy anodes (Si, Ge and Sn) electrospun into carbon nanofibers as binder-free electrodes were synthesized and studied for rechargeable lithium-ion batteries. Alloy anode materials suffer from serious volume changes and nanoparticle aggregations during lithium insertion and extraction, resulting in rapid pulverization and capacity loss. Carbon nanofibers could help preserve the alloy anode materials during repeated cycling, and consequently maintain the cycling stability. In this work, it was found that with the increase in the amount of Si, Ge and Sn, the cycling stability was decreased due to the formation of large clusters within the carbon nanofiber matrix. Compared with Si/carbon nanofibers, Ge/carbon and Sn/carbon exhibited better cycling performance due to their improved nanoparticle distribution and smaller volume changes. The failure mechanism of the Si/carbon structure was explained in this article. It is believed that this study on Si/carbon, Ge/carbon and Sn/carbon composite nanofiber electrodes could help in designing alloy-based carbon composites with various structures for advanced lithium-ion batteries.}, journal={SOLID STATE IONICS}, publisher={Elsevier BV}, author={Li, Shuli and Chen, Chen and Fu, Kun and Xue, Leigang and Zhao, Chengxin and Zhang, Shu and Hu, Yi and Zhou, Lan and Zhang, Xiangwu}, year={2014}, month={Jan}, pages={17–26} } @article{li_hu_lu_zhang_xu_fu_li_chen_zhou_xia_et al._2014, title={One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries}, volume={254}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11754003/}, DOI={10.1016/j.jpowsour.2013.12.044}, abstractNote={One-dimensional silicon oxycarbide (SiOC)/C composite nanofibers were fabricated by electrospinning and subsequent heat treatment. Introducing carbon matrix to SiOC anode material is an efficient way to accommodate the large volume changes during cycling and also increase the amount of free carbon, which is beneficial for improving the reversible capacity. These SiOC/C composite nanofibers form free-standing conductive membranes that can be used directly as battery electrodes without adding carbon black or polymer binder. Results show that after 80 cycles, the discharge capacity of SiOC/C composite nanofiber anodes is 70% higher than that of Si/C nanofiber anodes and more than 1.5 times larger than those of commercial anodes made from graphite. It is, therefore, demonstrated that one-dimensional SiOC/C nanofibers are promising anode material with large capacities and good cycling stability.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Ying and Hu, Yi and Lu, Yao and Zhang, Shu and Xu, Guanjie and Fu, Kun and Li, Shuli and Chen, Chen and Zhou, Lan and Xia, Xin and et al.}, year={2014}, month={May}, pages={33–38} } @article{lu_zhang_li_xue_xu_zhang_2014, title={Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries}, volume={247}, ISSN={["1873-2755"]}, url={https://publons.com/publon/7178355/}, DOI={10.1016/j.jpowsour.2013.09.018}, abstractNote={Sodium vanadium fluorophosphate (NaVPO4F), a material candidate for sodium-ion battery cathodes, was synthesized via a high-temperature solid-state reaction approach. Different amounts of carbon coating were introduced in NaVPO4F to improve its electrochemical performance. The structure and morphology of the resultant cathode materials were examined by scanning electron microscopy and X-ray diffraction. The effects of carbon coating on the electrochemical performance were evaluated by cyclic voltammetry, charge–discharge curve, cycling performance and electrochemical impedance spectroscopy. The highest capacity achieved for this material was 97.8 mAh g−1 and the best capacity retention was 89% at the 20th cycle. Results demonstrated that appropriate amount of carbon coating could effectively improve the electrochemical performance of NaVPO4F, and carbon-coated NaVPO4F could offer promising future for sodium-ion battery cathode materials.}, journal={JOURNAL OF POWER SOURCES}, author={Lu, Yao and Zhang, Shu and Li, Ying and Xue, Leigang and Xu, Guanjie and Zhang, Xiangwu}, year={2014}, month={Feb}, pages={770–777} } @article{li_sun_xu_lu_zhang_xue_jur_zhang_2014, title={Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating}, volume={2}, ISSN={["2050-7496"]}, url={https://publons.com/publon/11754001/}, DOI={10.1039/c4ta01562b}, abstractNote={A free-standing, conductive and three-dimensional network of Al2O3-coated Si/C composite nanofibers is fabricated by a single-nozzle electrospinning and atomic layer deposition. The as-obtained Al2O3-coated Si/C composite nanofibers exhibit excellent electrochemical performance for applications as anode materials for lithium-ion batteries.}, number={29}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Li, Ying and Sun, Yujie and Xu, Guanjie and Lu, Yao and Zhang, Shu and Xue, Leigang and Jur, Jesse S. and Zhang, Xiangwu}, year={2014}, pages={11417–11425} } @article{xue_xia_tucker_fu_zhang_li_zhang_2013, title={A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability}, volume={1}, ISSN={["2050-7496"]}, url={https://publons.com/publon/7178344/}, DOI={10.1039/c3ta12921g}, abstractNote={The practical use of high-capacity anodes in lithium-ion batteries generally suffers from significant volume changes upon lithium insertion and extraction. The volume changes induce cracks and loss of inter-particle electronic contact in the electrode, resulting in rapid capacity decay. The use of fiber-like materials to prevent cracks and accommodate volume changes is widely observed in many animal and human activities. Birds mix grass and feathers into mud to build nests, and humans in ancient times blended straw with mud to produce adobe bricks for housing construction. In view of this point, this research designed a porous nanofiber structure to resolve the unstable structure problem of anode materials. The three-dimensional network structure composed of nanofibers provides a highly elastic matrix to accommodate the volume changes of high-capacity Sn and Sb particles and pores around the active particles, induced by CO2 evolution, serve as an additional buffer zone for the volume changes. This unique structure prepared by using a new SnSb alloy precursor and a simple electrospinning technique leads to excellent lithium storage performance in terms of energy density, cycling stability, and rate capability.}, number={44}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, author={Xue, Leigang and Xia, Xin and Tucker, Telpriore and Fu, Kun and Zhang, Shu and Li, Shuli and Zhang, Xiangwu}, year={2013}, pages={13807–13813} } @inproceedings{li_fu_xue_toprakci_li_zhang_xu_lu_zhang_2013, title={Co3O4/carbon composite nanofibers for use as anode material in advanced lithium-ion batteries}, volume={1140}, url={https://publons.com/publon/7178343/}, DOI={10.1021/bk-2013-1140.ch003}, abstractNote={Co3O4/carbon composite nanofibers were prepared by a combination of electrospinning and carbonization methods using 10 - 30 nm and 30 - 50 nm Co3O4 nanoparticles, respectively, and their potential use as the anode material in rechargeable lithium-ion batteries was investigated. The composite Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles showed large reversible capacities and good cycleability with charge capacities of 677 and 545 mAh g-1 at the second and twentieth cycles, respectively. In contrast, the composite Co3O4/carbon nanofiber electrode containing 10 - 30 nm Co3O4 nanoparticles showed fast capacity fading during cycling due to severe nanoparticle aggregation. Results suggested that the good electrochemical performance of Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles was ascribed to the combination of the properties of both Co3O4 nanoparticles (large Li storage capability) and carbon nanofiber matrix (long cycle life), and therefore this electrode material could be potentially used in high-energy rechargeable lithium-ion batteries.}, booktitle={Nanotechnology for sustainable energy}, author={Li, S. L. and Fu, K. and Xue, L. G. and Toprakci, O. and Li, Y. and Zhang, S. and Xu, G. J. and Lu, Y. and Zhang, Xiangwu}, year={2013}, pages={55–66} } @article{li_xu_xue_zhang_yao_lu_toprakci_zhang_2013, title={Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes}, volume={160}, ISSN={["1945-7111"]}, url={https://publons.com/publon/674380/}, DOI={10.1149/2.031304jes}, abstractNote={Si/C and Si/carbon nanotube (CNT)/C composite nanofibers were prepared by electrospinning and carbonization. The carbon nanofiber matrix can accommodate the volume change of Si nanoparticles and provide continuous pathways for efficient charge transport along the fiber axis. CNTs can improve the electronic conductivity and electrochemical performance of the composite nanofiber anodes. Results showed that many different types of connections between CNTs, Si nanoparticles and carbon matrix were formed. At a high current density of 300 mA g−1, after 30 cycles, the capacity of Si/CNT/C composite nanofiber anode was 44.3% higher than the anode without CNT and the C-rate performance of Si/CNT/C composite nanofiber anode was also superior to that of Si/C anode. It is, therefore, demonstrated that Si/CNT/C nanofibers are promising anode material with large capacities, good cycling stability, and good rate capability.}, number={3}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Li, Ying and Xu, Guanjie and Xue, Leigang and Zhang, Shu and Yao, Yingfang and Lu, Yao and Toprakci, Ozan and Zhang, Xiangwu}, year={2013}, pages={A528–A534} } @article{li_xu_yao_xue_zhang_lu_toprakci_zhang_2013, title={Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive}, volume={17}, ISSN={["1433-0768"]}, url={https://publons.com/publon/674383/}, DOI={10.1007/s10008-013-2005-7}, number={5}, journal={JOURNAL OF SOLID STATE ELECTROCHEMISTRY}, author={Li, Ying and Xu, Guanjie and Yao, Yingfang and Xue, Leigang and Zhang, Shu and Lu, Yao and Toprakci, Ozan and Zhang, Xiangwu}, year={2013}, month={May}, pages={1393–1399} } @article{lu_li_zhang_xu_fu_lee_zhang_2013, title={Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process}, volume={49}, ISSN={["1873-1945"]}, url={https://publons.com/publon/7178360/}, DOI={10.1016/j.eurpolymj.2013.09.017}, abstractNote={Electrospinning is currently the most popular method for producing polymer nanofibers. However, the low production rate and safety concern limit the practical use of electrospinning as a cost-effective nanofiber fabrication approach. Herein, we present a novel and simple centrifugal spinning technology that extrudes nanofibers from polymer solutions by using a high-speed rotary and perforated spinneret. Polyacrylonitrile (PAN) nanofibers were prepared by selectively varying parameters that can affect solution intrinsic properties and operational conditions. The resultant PAN nanofibers were characterized by SEM, and XRD. The correlation between fiber morphology and processing conditions was established. Results demonstrated that the fiber morphology can be easily manipulated by controlling the spinning parameters and the centrifugal spinning process is a facile approach for fabricating polymer nanofibers in a large-scale and low-cost fashion.}, number={12}, journal={EUROPEAN POLYMER JOURNAL}, author={Lu, Yao and Li, Ying and Zhang, Shu and Xu, Guanjie and Fu, Kun and Lee, Hun and Zhang, Xiangwu}, year={2013}, month={Dec}, pages={3834–3845} } @article{fu_xue_yildiz_li_lee_li_xu_zhou_bradford_zhang_et al._2013, title={Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode}, volume={2}, ISSN={["2211-3282"]}, url={https://publons.com/publon/674385/}, DOI={10.1016/j.nanoen.2012.11.001}, abstractNote={High-energy anode materials have attracted significant attention because of their potential applications in large-scale energy storage devices. However, they often suffer from rapid capacity fading due to the pulverization of the electrode and the breakdown of electric conductive network caused by the large volume changes of active material upon repeated lithium insertion and extraction. In this work, a new electrode composed of Si/C composite nanofibers was prepared, aiming at the improvement of cycling performance of Si anodes through the establishment of a stable electric conductive network for Si during cycling. By electrospinning, a three-dimensional network of carbon nanofibers, which possesses good elasticity to maintain the structure integrity and stable electric conductive network, is formed; by carbon coating, all Si nanoparticles are tightly bonded with carbon fibers to form a stable electric conductive pathway for electrode reactions. The nanofiber structure and the carbon coating on Si, combined with the binder, lead to a stable network structure that can accommodate the huge volume change of Si during the repeated volume expansion and contraction, thus resulting in excellent cycling performance.}, number={3}, journal={NANO ENERGY}, publisher={Elsevier BV}, author={Fu, Kun and Xue, Leigang and Yildiz, Ozkan and Li, Shuli and Lee, Hun and Li, Ying and Xu, Guanjie and Zhou, Lan and Bradford, Philip D. and Zhang, Xiangwu and et al.}, year={2013}, month={May}, pages={361–367} } @article{li_guo_ji_lin_xu_liang_zhang_toprakci_hu_alcoutlabi_et al._2013, title={Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage}, volume={51}, ISSN={["1873-3891"]}, url={https://publons.com/publon/674384/}, DOI={10.1016/j.carbon.2012.08.027}, abstractNote={Si/C composite nanofibers were prepared by electrospinning and carbonization using polyacrylonitrile (PAN) as the spinning medium and carbon precursor. The nanofibers were used as lithium-ion battery anodes to combine the advantages of carbon (long cycle life) and silicon (high storage capacity) materials. The effects of Si particle size, Si content, and carbonization temperature on the structure and electrochemical performance of the anodes were investigated. Results show that anodes made from a 15 wt.% Si/PAN precursor with a Si particle size of 30–50 nm and carbonization temperature of 800 °C exhibit the best performance in terms of high capacity and stable cycling behavior. It is demonstrated that with careful structure control, Si/C composite nanofiber anodes are a promising material for next-generation lithium-ion batteries.}, journal={CARBON}, author={Li, Ying and Guo, Bingkun and Ji, Liwen and Lin, Zhan and Xu, Guanjie and Liang, Yinzheng and Zhang, Shu and Toprakci, Ozan and Hu, Yi and Alcoutlabi, Mataz and et al.}, year={2013}, month={Jan}, pages={185–194} } @article{toprakci_toprakci_li_ji_xue_lee_zhang_zhang_2013, title={Synthesis and characterization of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries}, volume={241}, ISSN={["0378-7753"]}, url={https://publons.com/publon/674386/}, DOI={10.1016/j.jpowsour.2013.04.155}, abstractNote={Various xLi2MnO3·(1 − x)LiCo1/3Ni1/3Mn1/3O2 (x = 0.1, 0.2, 0.3, 0.4, and 0.5) cathode materials were prepared by the one-step sol–gel route. The structure of xLi2MnO3·(1 − x)LiCo1/3Ni1/3Mn1/3O2 composites was determined by X-ray diffraction analysis. The surface morphology and microstructure of xLi2MnO3·(1 − x)LiCo1/3Ni1/3Mn1/3O2 composites were characterized using scanning electron microscopy and transmission electron microscopy. Electrochemical performance of xLi2MnO3·(1 − x)LiCo1/3Ni1/3Mn1/3O2 composites was evaluated in terms of capacity, cycling performance and rate capability. Although the morphology and structure were found to be affected by the Li2MnO3 content, all composites showed an α-NaFeO2 structure with R3m space group. Electrochemical results showed that cells using 0.3Li2MnO3·0.7LiCo1/3Ni1/3Mn1/3O2 composites had good performance, in terms of large reversible capacity, prolonged cycling stability, and excellent rate capability.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Toprakci, Ozan and Toprakci, Hatice A. K. and Li, Ying and Ji, Liwen and Xue, Leigang and Lee, Hun and Zhang, Shu and Zhang, Xiangwu}, year={2013}, month={Nov}, pages={522–528} } @article{xue_zhang_li_lu_toprakci_xia_chen_hu_zhang_2013, title={Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries}, volume={577}, ISSN={["1873-4669"]}, url={https://publons.com/publon/674387/}, DOI={10.1016/j.jallcom.2013.07.029}, abstractNote={Lithium-ion batteries have been wildly used in various portable electronic devices and the application targets are currently moving from small-sized mobile devices to large-scale electric vehicles and grid energy storage. Therefore, lithium-ion batteries with higher energy densities are in urgent need. For high-energy cathodes, Li2MnO3–LiMO2 layered–layered (M = Mn, Co, Ni) materials are of significant interest due to their high specific capacities over wide operating potential windows. Here, three Li2MnO3-based cathode materials with α-NaFeO2 structure were prepared by a facile co-precipitation method and subsequent heat treatment. Among these three materials, 0.3Li2MnO3·0.5LiMn0.5Ni0.5O2·0.2LiCoO2 shows the best lithium storage capability. This cathode material is composed of uniform nanosized particles with diameters ranging from 100 to 200 nm, and it could be charged to a high cutoff potential to extract more lithium, resulting in a high capacity of 178 mAh g−1 between 2.0 and 4.6 V with almost no capacity loss over 100 cycles.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, author={Xue, Leigang and Zhang, Shu and Li, Shuli and Lu, Yao and Toprakci, Ozan and Xia, Xin and Chen, Chen and Hu, Yi and Zhang, Xiangwu}, year={2013}, month={Nov}, pages={560–563} } @article{li_lin_xu_yao_zhang_toprakci_alcoutlabi_zhang_2012, title={Electrochemical Performance of Carbon Nanofibers Containing an Enhanced Dispersion of Silicon Nanoparticles for Lithium-Ion Batteries by Employing Surfactants}, volume={1}, ISSN={["2162-8734"]}, url={https://publons.com/publon/674390/}, DOI={10.1149/2.002202eel}, abstractNote={Si/C composite nanofibers were prepared by electrospinning and carbonization. Two surfactants: cetyl trimethyl ammonium bromide (CTAB) and sodium dodecanoate (SD), were used to improve the dispersion of Si nanoparticles and the electrochemical performance. Results show that after 50 cycles, the discharge capacity of Si/C nanofibers does not have significant change after the addition of CTAB surfactant, however, the discharge capacity of Si/C nanofibers with SD surfactant is more than 20% higher than that without surfactant. It is demonstrated that employing SD surfactant is a simple and effective way to obtain Si/C nanofibers with large capacities and good cycling stability.}, number={2}, journal={ECS ELECTROCHEMISTRY LETTERS}, author={Li, Ying and Lin, Zhan and Xu, Guanjie and Yao, Yingfang and Zhang, Shu and Toprakci, Ozan and Alcoutlabi, Mataz and Zhang, Xiangwu}, year={2012}, pages={A31–A33} } @article{liang_cheng_zhao_zhang_sun_zhou_qiu_zhang_2012, title={High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries}, volume={213}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016%2Fj.jpowsour.2013.04.019}, DOI={10.1016/j.jpowsour.2012.04.011}, abstractNote={Li2MnSiO4 has been considered as a promising cathode material with an extremely high theoretically capacity of 332 mAh g−1. However, due to its low intrinsic conductivity and poor structural stability, only about half of the theoretical capacity has been realized in practice and the capacity decays rapidly during cycling. To realize the high capacity and improve the cycling performance, Li2Mn0.8Fe0.2SiO4/carbon composite nanofibers were prepared by the combination of iron doping and electrospinning. X-ray diffraction, scanning electron microscope, and transmission electronic microscope were applied to characterize the Li2Mn0.8Fe0.2SiO4/carbon nanofibers. It was found that Li2Mn0.8Fe0.2SiO4 nanoparticles were embedded into continuous carbon nanofiber matrices, which formed free-standing porous mats that could be used as binder-free cathodes. The iron doping improved the conductivity and purity of the active material, and the carbon nanofiber matrix facilitated ion transfer and charge diffusion. As a result, Li2Mn0.8Fe0.2SiO4/carbon nanofiber cathodes showed promising improvement on reversible capacity and cycling performance.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Liang, Yinzheng and Cheng, Sichen and Zhao, Jianmeng and Zhang, Changhuan and Sun, Shiyuan and Zhou, Nanting and Qiu, Yiping and Zhang, Xiangwu}, year={2012}, month={Sep}, pages={10–15} } @article{zhang_lu_xu_li_zhang_2012, title={LiF/Fe/C nanofibres as a high-capacity cathode material for Li-ion batteries}, volume={45}, ISSN={["1361-6463"]}, url={https://publons.com/publon/7178351/}, DOI={10.1088/0022-3727/45/39/395301}, abstractNote={Abstract}, number={39}, journal={JOURNAL OF PHYSICS D-APPLIED PHYSICS}, author={Zhang, Shu and Lu, Yao and Xu, Guanjie and Li, Ying and Zhang, Xiangwu}, year={2012}, month={Oct} } @article{ji_toprakci_alcoutlabi_yao_li_zhang_guo_lin_zhang_2012, title={alpha-Fe2O3 Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries}, volume={4}, ISSN={["1944-8244"]}, url={https://publons.com/publon/674393/}, DOI={10.1021/am300333s}, abstractNote={α-Fe(2)O(3) nanoparticle-loaded carbon nanofiber composites were fabricated via electrospinning FeCl(3)·6H(2)O salt-polyacrylonitrile precursors in N,N-dimethylformamide solvent and the subsequent carbonization in inert gas. Scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and elemental analysis were used to study the morphology and composition of α-Fe(2)O(3)-carbon nanofiber composites. It was indicated that α-Fe(2)O(3) nanoparticles with an average size of about 20 nm have a homogeneous dispersion along the carbon nanofiber surface. The resultant α-Fe(2)O(3)-carbon nanofiber composites were used directly as the anode material in rechargeable lithium half cells, and their electrochemical performance was evaluated. The results indicated that these α-Fe(2)O(3)-carbon nanofiber composites have high reversible capacity, good capacity retention, and acceptable rate capability when used as anode materials for rechargeable lithium-ion batteries.}, number={5}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Ji, Liwen and Toprakci, Ozan and Alcoutlabi, Mataz and Yao, Yingfang and Li, Ying and Zhang, Shu and Guo, Bingkun and Lin, Zhan and Zhang, Xiangwu}, year={2012}, month={May}, pages={2672–2679} } @article{alcoutlabi_ji_guo_li_li_zhang_toprakci_zhang_2011, title={Electrospun nanofibers for energy storage}, volume={11}, number={6}, journal={AATCC Review}, author={Alcoutlabi, M. and Ji, L. W. and Guo, B. K. and Li, S. L. and Li, Y. and Zhang, S. and Toprakci, O. and Zhang, X. W.}, year={2011}, pages={45–51} } @article{zhang_shim_kim_2009, title={Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency}, volume={30}, ISSN={["1873-4197"]}, DOI={10.1016/j.matdes.2009.02.017}, abstractNote={Electrospinning and its application in filtration area are worthwhile to look into as the large surface-to-volume ratio of nanoweb may affect the filtration efficiency by possibly giving more particle-capture sites. In this study, Nylon 6 is electrospun to produce ultra-fine nonwovens, and its characteristics as filter media are investigated. Electrospinning parameters including solution concentration, tip-to-collector distance, and the feed rate are changed in producing nonwovens in different fibre size distribution ranging from 50 to 150 nm in diameters. The solution concentration of 10 and 12 wt% produced the fibres with the average diameter of around 85 nm, where 15 wt% solution produced larger fibres with the average diameter of 121 nm. Finer fibres were able to process at longer tip-to-collector distance and at slower feed rate. The electrospun media that are processed at different spinning conditions are evaluated for its filtration efficiency and pressure drop. The electrospun nanofibre media shows the potential in application as HEPA and ULPA grade filter media, by comparing the filtering performance of nanoweb with the conventional melt-blown nonwoven media.}, number={9}, journal={MATERIALS & DESIGN}, author={Zhang, Shu and Shim, Woo Sub and Kim, Jooyoun}, year={2009}, month={Oct}, pages={3659–3666} }