@article{allen_cheng_2021, title={Imaging and Isolation of Extravasation-Participating Endothelial and Melanoma Cells During Angiopellosis}, volume={2265}, ISBN={["978-1-0716-1204-0"]}, ISSN={["1940-6029"]}, DOI={10.1007/978-1-0716-1205-7_30}, abstractNote={Cancer mortality rates are primarily a result of cancer metastasis. Recent advances in microscopy technology allow for the imaging of circulating tumor cells (CTCs) as they extravasate (exit) blood vessels, a key step in the metastasis process. Here, we describe the use of intravital microscopy techniques to image and isolate both extravasating melanoma CTCs and the extravasation-participating endothelial cells. These techniques can be used as a means to study cancer metastasis and as a screening tool for anticancer therapeutics.}, journal={MELANOMA}, author={Allen, Tyler A. and Cheng, Ke}, year={2021}, pages={417–425} } @article{qiao_hu_huang_su_li_vandergriff_cores_dinh_allen_shen_et al._2020, title={Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs}, volume={10}, ISSN={["1838-7640"]}, DOI={10.7150/thno.39434}, abstractNote={Cancer is the second leading cause of death worldwide and patients are in urgent need of therapies that can effectively target cancer with minimal off-target side effects. Exosomes are extracellular nano-shuttles that facilitate intercellular communication between cells and organs. It has been established that tumor-derived exosomes contain a similar protein and lipid composition to that of the cells that secrete them, indicating that exosomes might be uniquely employed as carriers for anti-cancer therapeutics. Methods: We isolated exosomes from two cancer cell lines, then co-cultured each type of cancer cells with these two kinds of exosomes and quantified exosome. HT1080 or Hela exosomes were systemically injected to Nude mice bearing a subcutaneous HT1080 tumor to investigate their cancer-homing behavior. Moreover, cancer cell-derived exosomes were engineered to carry Doxil (a common chemotherapy drug), known as D-exo, were used to detect their target and therapeutic efficacy as anti-cancer drugs. Exosome proteome array analysis were used to reveal the mechanism underly this phenomenon. Results: Exosomes derived from cancer cells fuse preferentially with their parent cancer cells, in vitro. Systemically injected tumor-derived exosomes home to their original tumor tissues. Moreover, compared to Doxil alone, the drug-loaded exosomes showed enhanced therapeutic retention in tumor tissues and eradicated them more effectively in nude mice. Exosome proteome array analysis revealed distinct integrin expression patterns, which might shed light on the underlying mechanisms that explain the exosomal cancer-homing behavior. Conclusion: Here we demonstrate that the exosomes' ability to target the parent cancer is a phenomenon that opens up new ways to devise targeted therapies to deliver anti-tumor drugs.}, number={8}, journal={THERANOSTICS}, author={Qiao, Li and Hu, Shiqi and Huang, Ke and Su, Teng and Li, Zhenhua and Vandergriff, Adam and Cores, Jhon and Dinh, Phuong-Uyen and Allen, Tyler and Shen, Deliang and et al.}, year={2020}, pages={3474–3487} } @article{su_huang_daniele_hensley_young_tang_allen_vandergriff_erb_ligler_et al._2018, title={Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction}, volume={10}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.8b13571}, abstractNote={Cardiac stem cell (CSC) therapy has shown preclinical and clinical evidence for ischemic heart repair but is limited by low cellular engraftment and survival after transplantation. Previous versions of the cardiac patch strategy improve stem cell engraftment and encourage repair of cardiac tissue. However, cardiac patches that can enhance cardiomyogenesis and angiogenesis at the injured site remain elusive. Therapies that target cardiomyocyte proliferation and new blood vessel formation hold great potential for the protection against acute myocardial infarction (MI). Here, we report a new strategy for creating a vascularized cardiac patch in a facile and modular fashion by leveraging microfluidic hydrodynamic focusing to construct the biomimetic microvessels (BMVs) that include human umbilical vein endothelial cells (HUVECs) lining the luminal surface and then encapsulating the BMVs in a fibrin gel spiked with human CSCs. We show that the endothelialized BMVs mimicked the natural architecture and function of capillaries and that the resultant vascularized cardiac patch (BMV-CSC patch) exhibited equivalent release of paracrine factors compared to those of coculture of genuine human CSCs and HUVECs after 7 days of in vitro culture. In a rat model of acute MI, the BMV-CSC patch therapy induced profound mitotic activities of cardiomyocytes in the peri-infarct region 4 weeks post-treatment. A significant increase in myocardial capillary density was noted in the infarcted hearts that received BMV-CSC patch treatment compared to the infarcted hearts treated with conventional CSC patches. The striking therapeutic benefits and the fast and facile fabrication of the BMV-CSC patch make it promising for practical applications. Our findings suggest that the BMV-CSC patch strategy may open up new possibilities for the treatment of ischemic heart injury.}, number={39}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Su, Teng and Huang, Ke and Daniele, Michael A. and Hensley, Michael Taylor and Young, Ashlyn T. and Tang, Junnan and Allen, Tyler A. and Vandergriff, Adam C. and Erb, Patrick D. and Ligler, Frances S. and et al.}, year={2018}, month={Oct}, pages={33088–33096} } @article{allen_amu_asad_cheng_2018, title={Metastatic melanoma and cervical tumor cell clusters can exit blood vessels through angiopellosis augmenting tumor formation ability}, volume={78}, ISSN={["1538-7445"]}, DOI={10.1158/1538-7445.AM2018-90}, abstractNote={Abstract}, number={13}, journal={CANCER RESEARCH}, author={Allen, Tyler and Amu, Emmanuel and Asad, Dana and Cheng, Ke}, year={2018}, month={Jul} } @article{tang_su_huang_dinh_wang_vandergriff_hensley_cores_allen_li_et al._2018, title={Targeted repair of heart injury by stem cells fused with platelet nanovesicles}, volume={2}, ISSN={2157-846X}, url={http://dx.doi.org/10.1038/s41551-017-0182-x}, DOI={10.1038/s41551-017-0182-x}, abstractNote={Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, we hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury. Here, we show that CSCs with platelet nanovesicles fused onto their surface membranes express platelet surface markers that are associated with platelet adhesion to injury sites. We also find that the modified CSCs selectively bind collagen-coated surfaces and endothelium-denuded rat aortas, and that in rat and porcine models of acute myocardial infarction the modified CSCs increase retention in the heart and reduce infarct size. Platelet-nanovesicle-fused CSCs thus possess the natural targeting and repairing ability of their parental cell types. This stem cell manipulation approach is fast, straightforward and safe, does not require genetic alteration of the cells, and should be generalizable to multiple cell types. The attachment of platelet nanovesicles to the surface of cardiac stem cells increases the retention of the cells delivered to the heart and reduces infarct size in rat and pig models of acute myocardial infarction.}, number={1}, journal={Nature Biomedical Engineering}, publisher={Springer Science and Business Media LLC}, author={Tang, Junnan and Su, Teng and Huang, Ke and Dinh, Phuong-Uyen and Wang, Zegen and Vandergriff, Adam and Hensley, Michael T. and Cores, Jhon and Allen, Tyler and Li, Taosheng and et al.}, year={2018}, month={Jan}, pages={17–26} } @article{tang_vandergriff_wang_hensley_cores_allen_dinh_zhang_caranasos_cheng_2017, title={A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart}, volume={23}, ISSN={1937-3384 1937-3392}, url={http://dx.doi.org/10.1089/ten.TEC.2016.0492}, DOI={10.1089/ten.tec.2016.0492}, abstractNote={Layering a regenerative polymer scaffold on the surface of the heart, termed as a cardiac patch, has been proven to be effective in preserving cardiac function after myocardial infarction (MI). However, the placement of such a patch on the heart usually needs open-chest surgery, which is traumatic, therefore prevents the translation of this strategy into the clinic. We sought to device a way to apply a cardiac patch by spray painting in situ polymerizable biomaterials onto the heart with a minimally invasive procedure. To prove the concept, we used platelet fibrin gel as the "paint" material in a mouse model of MI. The use of the spraying system allowed for placement of a uniform cardiac patch on the heart in a mini-invasive manner without the need for sutures or glue. The spray treatment promoted cardiac repair and attenuated cardiac dysfunction after MI.}, number={3}, journal={Tissue Engineering Part C: Methods}, publisher={Mary Ann Liebert Inc}, author={Tang, Junnan and Vandergriff, Adam and Wang, Zegen and Hensley, Michael Taylor and Cores, Jhon and Allen, Tyler A. and Dinh, Phuong-Uyen and Zhang, Jinying and Caranasos, Thomas George and Cheng, Ke}, year={2017}, month={Mar}, pages={146–155} } @article{dinh_cores_hensley_vandergriff_tang_allen_caranasos_adler_lobo_cheng_2017, title={Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies}, volume={18}, ISSN={1465-993X}, url={http://dx.doi.org/10.1186/s12931-017-0611-0}, DOI={10.1186/s12931-017-0611-0}, abstractNote={Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality.In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery.From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days.Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).}, number={1}, journal={Respiratory Research}, publisher={Springer Nature}, author={Dinh, Phuong-Uyen C. and Cores, Jhon and Hensley, M. Taylor and Vandergriff, Adam C. and Tang, Junnan and Allen, Tyler A. and Caranasos, Thomas G. and Adler, Kenneth B. and Lobo, Leonard J. and Cheng, Ke}, year={2017}, month={Jun} } @article{cores_hensley_kinlaw_rikard_dinh_paudel_tang_vandergriff_allen_li_et al._2017, title={Safety and Efficacy of Allogeneic Lung Spheroid Cells in a Mismatched Rat Model of Pulmonary Fibrosis}, volume={6}, ISSN={2157-6564}, url={http://dx.doi.org/10.1002/sctm.16-0374}, DOI={10.1002/sctm.16-0374}, abstractNote={Abstract}, number={10}, journal={STEM CELLS Translational Medicine}, publisher={Wiley}, author={Cores, Jhon and Hensley, M. Taylor and Kinlaw, Kathryn and Rikard, S. Michaela and Dinh, Phuong-Uyen and Paudel, Dipti and Tang, Junnan and Vandergriff, Adam C. and Allen, Tyler A. and Li, Yazhou and et al.}, year={2017}, month={Aug}, pages={1905–1916} } @article{tang_shen_caranasos_wang_vandergriff_allen_hensley_dinh_cores_li_et al._2017, title={Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13724}, DOI={10.1038/ncomms13724}, abstractNote={Abstract}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Tang, Junnan and Shen, Deliang and Caranasos, Thomas George and Wang, Zegen and Vandergriff, Adam C. and Allen, Tyler A. and Hensley, Michael Taylor and Dinh, Phuong-Uyen and Cores, Jhon and Li, Tao-Sheng and et al.}, year={2017}, month={Jan} } @article{allen_gracieux_talib_tokarz_hensley_cores_vandergriff_tang_de andrade_dinh_et al._2016, title={Angiopellosis as an Alternative Mechanism of Cell Extravasation}, volume={35}, ISSN={1066-5099}, url={http://dx.doi.org/10.1002/stem.2451}, DOI={10.1002/stem.2451}, abstractNote={Abstract}, number={1}, journal={STEM CELLS}, publisher={Wiley}, author={Allen, Tyler A. and Gracieux, David and Talib, Maliha and Tokarz, Debra A. and Hensley, M. Taylor and Cores, Jhon and Vandergriff, Adam and Tang, Junnan and de Andrade, James B.M. and Dinh, Phuong-Uyen and et al.}, year={2016}, month={Jul}, pages={170–180} } @article{henry_cores_hensley_anthony_vandergriff_andrade_allen_caranasos_lobo_cheng_2015, title={Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis}, volume={4}, ISSN={["2157-6580"]}, DOI={10.5966/sctm.2015-0062}, abstractNote={Abstract}, number={11}, journal={STEM CELLS TRANSLATIONAL MEDICINE}, author={Henry, Eric and Cores, Jhon and Hensley, M. Taylor and Anthony, Shirena and Vandergriff, Adam and Andrade, James B. M. and Allen, Tyler and Caranasos, Thomas G. and Lobo, Leonard J. and Cheng, Ke}, year={2015}, month={Nov}, pages={1265–1274} } @article{andrade_tang_hensley_vandergriff_cores_henry_allen_caranasos_wang_zhang_et al._2015, title={Rapid and Efficient Production of Coronary Artery Ligation and Myocardial Infarction in Mice Using Surgical Clips}, volume={10}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0143221}, abstractNote={Aims The coronary artery ligation model in rodents mimics human myocardial infarction (MI). Normally mechanical ventilation and prolonged anesthesia period are needed. Recently, a method has been developed to create MI by popping-out the heart (without ventilation) followed by immediate suture ligation. Mortality is high due to the time-consuming suture ligation process while the heart is exposed. We sought to improve this method and reduce mortality by rapid coronary ligation using a surgical clip instead of a suture. Methods and Results Mice were randomized into 3 groups: clip MI (CMI), suture MI (SMI), or sham (SHAM). In all groups, heart was manually exposed without intubation through a small incision on the chest wall. Unlike the conventional SMI method, mice in the CMI group received a metal clip on left anterior descending artery (LAD), quickly dispensed by an AutoSuture Surgiclip™. The CMI method took only 1/3 of ligation time of the standard SMI method and improved post-MI survival rate. TTC staining and Masson’s trichrome staining revealed a similar degree of infarct size in the SMI and CMI groups. Echocardiograph confirmed that both SMI and CMI groups had a similar reduction of ejection fraction and fraction shortening over the time. Histological analysis showed that the numbers of CD68+ macrophages and apoptotic cells (TUNEL-positive) are indistinguishable between the two groups. Conclusion This new method, taking only less than 3 minutes to complete, represents an efficient myocardial infarction model in rodents.}, number={11}, journal={PLOS ONE}, author={Andrade, James N. B. M. and Tang, Junnan and Hensley, Michael Taylor and Vandergriff, Adam and Cores, Jhon and Henry, Eric and Allen, Tyler A. and Caranasos, Thomas George and Wang, Zegen and Zhang, Tianxia and et al.}, year={2015}, month={Nov} }