@article{ghasemi_guo_darabi_wang_wang_huang_lefler_taussig_chauhan_baucom_et al._2023, title={A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-023-01488-2}, abstractNote={Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.}, journal={NATURE MATERIALS}, author={Ghasemi, Masoud and Guo, Boyu and Darabi, Kasra and Wang, Tonghui and Wang, Kai and Huang, Chiung-Wei and Lefler, Benjamin M. and Taussig, Laine and Chauhan, Mihirsinh and Baucom, Garrett and et al.}, year={2023}, month={Feb} } @article{corzo_wang_gedda_yengel_khan_li_niazi_huang_kim_baran_et al._2022, title={A Universal Cosolvent Evaporation Strategy Enables Direct Printing of Perovskite Single Crystals for Optoelectronic Device Applications}, volume={34}, ISSN={0935-9648 1521-4095}, url={http://dx.doi.org/10.1002/adma.202109862}, DOI={10.1002/adma.202109862}, abstractNote={Abstract}, number={9}, journal={Advanced Materials}, publisher={Wiley}, author={Corzo, Daniel and Wang, Tonghui and Gedda, Murali and Yengel, Emre and Khan, Jafar I and Li, Ruipeng and Niazi, Muhammad Rizwan and Huang, Zhengjie and Kim, Taesoo and Baran, Derya and et al.}, year={2022}, month={Jan}, pages={2109862} } @article{ghasemi_balar_peng_hu_qin_kim_rech_bidwell_mask_mcculloch_et al._2021, title={A molecular interaction-diffusion framework for predicting organic solar cell stability}, volume={20}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-020-00872-6}, abstractNote={Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy E a scales linearly with the enthalpic interaction parameters χ H between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in E a to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.}, number={4}, journal={NATURE MATERIALS}, author={Ghasemi, Masoud and Balar, Nrup and Peng, Zhengxing and Hu, Huawei and Qin, Yunpeng and Kim, Taesoo and Rech, Jeromy J. and Bidwell, Matthew and Mask, Walker and McCulloch, Iain and et al.}, year={2021}, month={Apr}, pages={525-+} } @article{ravishankar_charles_xiong_henry_swift_rech_calero_cho_booth_kim_et al._2021, title={Balancing crop production and energy harvesting in organic solar-powered greenhouses}, volume={2}, ISSN={["2666-3864"]}, DOI={10.1016/j.xcrp.2021.100381}, abstractNote={Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation, thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system-relevant design. We evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus affect plant growth, power generation, and thermal load of the greenhouse, and this design trade space is reviewed and exemplified.}, number={3}, journal={CELL REPORTS PHYSICAL SCIENCE}, publisher={Elsevier BV}, author={Ravishankar, Eshwar and Charles, Melodi and Xiong, Yuan and Henry, Reece and Swift, Jennifer and Rech, Jeromy and Calero, John and Cho, Sam and Booth, Ronald E. and Kim, Taesoo and et al.}, year={2021}, month={Mar} } @article{yi_peng_xu_seyitliyev_ho_danilov_kim_reynolds_amassian_gundogdu_et al._2020, title={Critical Role of Polymer Aggregation and Miscibility in Nonfullerene-Based Organic Photovoltaics}, volume={10}, ISSN={["1614-6840"]}, url={http://dx.doi.org/10.1002/aenm.201902430}, DOI={10.1002/aenm.201902430}, abstractNote={Abstract}, number={8}, journal={ADVANCED ENERGY MATERIALS}, author={Yi, Xueping and Peng, Zhengxing and Xu, Bing and Seyitliyev, Dovletgeldi and Ho, Carr Hoi Yi and Danilov, Evgeny O. and Kim, Taesoo and Reynolds, John R. and Amassian, Aram and Gundogdu, Kenan and et al.}, year={2020}, month={Feb} } @article{ho_kim_xiong_firdaus_yi_dong_rech_gadisa_booth_brendan t. o'connor_et al._2020, title={High-Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer}, volume={10}, ISSN={["1614-6840"]}, url={https://doi.org/10.1002/aenm.202000823}, DOI={10.1002/aenm.202000823}, abstractNote={Abstract}, number={25}, journal={ADVANCED ENERGY MATERIALS}, publisher={Wiley}, author={Ho, Carr Hoi Yi and Kim, Taesoo and Xiong, Yuan and Firdaus, Yuliar and Yi, Xueping and Dong, Qi and Rech, Jeromy J. and Gadisa, Abay and Booth, Ronald and Brendan T. O'Connor and et al.}, year={2020}, month={Jul} }