Thuy Le Le, H. P. N., Le, T. T., & Nguyen, L. H. (2024). The Carleman convexification method for Hamilton-Jacobi equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 159, 173–185. https://doi.org/10.1016/j.camwa.2024.02.021 Abhishek, A., Le, T. T., Nguyen, L. H., & Khan, T. (2024). The Carleman-Newton method to globally reconstruct the initial condition for nonlinear parabolic equations. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 445. https://doi.org/10.1016/j.cam.2024.115827 Hao, D.-N., Le, T. T., & Nguyen, L. H. (2024). The Fourier-based dimensional reduction method for solving a nonlinear inverse heat conduction problem with limited boundary data. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 128. https://doi.org/10.1016/j.cnsns.2023.107679 Le, T. T., Nguyen, L. V., Nguyen, L. H., & Park, H. (2024). The time dimensional reduction method to determine the initial conditions without the knowledge of damping coefficients. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2024.03.038 Abney, R., Le, T. T., Nguyen, L. H., & Peters, C. (2023). A Carleman-Picard approach for reconstructing zero-order coefficients in parabolic equations with limited data. https://doi.org/10.48550/ARXIV.2309.14599 Nguyen, P. M., Le, T. T., Nguyen, L. H., & Klibanov, M. V. (2023). Numerical differentiation by the polynomial-exponential basis. https://doi.org/10.48550/ARXIV.2304.05909 Le, T., Khoa, V. A., Klibanov, M. V., Nguyen, L. H., Bidney, G., & Astratov, V. (2023). Numerical verification of the convexification method for a frequency-dependent inverse scattering problem with experimental data. https://doi.org/10.48550/ARXIV.2306.00761 Dinh-Nho, H., Le, T. T., & Nguyen, L. H. (2023). The dimensional reduction method for solving a nonlinear inverse heat conduction problem with limited boundary data. https://doi.org/10.48550/ARXIV.2305.19528 Le, T. T., Nguyen, L. V., Nguyen, L. H., & Park, H. (2023). The time dimensional reduction method to determine the initial conditions without the knowledge of damping coefficients. https://doi.org/10.48550/ARXIV.2308.13152 Le, T. T., Nguyen, L. H., & Tran, H. V. (2022). A Carleman-based numerical method for quasilinear elliptic equations with over-determined boundary data and applications. Computers & Mathematics with Applications, 125, 13–24. https://doi.org/10.1016/j.camwa.2022.08.032 Le, T. T. T., & Nguyen, L. H. (2022). A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data. Journal of Inverse and Ill-Posed Problems, 30(2), 265–286. https://doi.org/10.1515/jiip-2020-0028 Le, T. T., Klibanov, M. V., Nguyen, L. H., Sullivan, A., & Nguyen, L. (2022). Carleman contraction mapping for a 1D inverse scattering problem with experimental time-dependent data. Inverse Problems, 38(4). https://doi.org/10.1088/1361-6420/ac50b8 Le, T. T. (2022). Global reconstruction of initial conditions of nonlinear parabolic equations via the Carleman-contraction method. ArXiv. https://doi.org/10.48550/arXiv.2205.10648 Le, H. P. N., Le, T. T., & Nguyen, L. H. (2022). The Carleman convexification method for Hamilton-Jacobi equations on the whole space. ArXiv. https://doi.org/10.48550/arXiv.2206.09824 Abhishek, A., Le, T., Nguyen, L., & Khan, T. (2022). The Carleman-Newton method to globally reconstruct a source term for nonlinear parabolic equation. https://doi.org/10.48550/ARXIV.2209.08011 Le, T. T., & Nguyen, L. (2022). The Gradient Descent Method for the Convexification to Solve Boundary Value Problems of Quasi-Linear PDEs and a Coefficient Inverse Problem. Journal of Scientific Computing, 91(3). https://doi.org/10.1007/s10915-022-01846-3 Klibanov, M. V., Le, T. T., Nguyen, L. H., Sullivan, A., & Nguyen, L. (2021). Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data. ArXiv. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85106104061&partnerID=MN8TOARS Le, T. T., Nguyen, L. H., Nguyen, T.-P., & Powell, W. (2021). The Quasi-reversibility Method to Numerically Solve an Inverse Source Problem for Hyperbolic Equations. Journal of Scientific Computing, 87(3). https://doi.org/10.1007/s10915-021-01501-3 Klibanov, M. V., Le, T. T., & Nguyen, L. H. (2020). Numerical solution of a linearized travel time tomography problem with incomplete data. SIAM Journal on Scientific Computing, 42(5), B1173–B1192. https://doi.org/10.1137/19M1299487