@article{vogel_phillips_clavet_kon_2024, title={Leader Bagging Improves Lateral Branching and Cropping Potential of 'Gala' and 'WA 38' Apple during Orchard Establishment}, volume={59}, ISSN={["2327-9834"]}, DOI={10.21273/HORTSCI17480-23}, abstractNote={Inadequate lateral branch development can lead to decreased apple ( Malus × domestica Borkh.) orchard productivity and profitability in modern high-density orchard systems. Although plant growth regulator applications are used to increase lateral branching on leaders of young apple trees, inconsistent responses have been observed in the southeastern United States. In North Carolina and Washington, three experiments were conducted to identify effective leader management strategies to increase lateral branching. Effects and interactions of leader bagging, 6-benzyladenine (6-BA), and 6-BA + gibberellic acid (GA 4+7 ) on lateral branch development of 1-year-old leaders were evaluated. Across all experiments, leader bagging was an influential factor. When compared with unbagged trees, leader bagging increased lateral branch number (20% to 48%), number of feathers (74% to 125%), average branch length (28% to 34%), and total linear bearing surface (428%) of the treated section of the leader. Blossom cluster density and final fruit set were increased in bagged trees, 65% and 36%, respectively. At the rates and timings tested, 6-BA and 6-BA + GA 4+7 were generally ineffective in stimulating lateral branching and interactions among the factors evaluated were not influential. Leader bagging was an effective lateral branch induction strategy, although the mechanism of action is poorly understood. Future research to characterize the bagged environment and/or physiological responses to bagging may aid in the development of future environmentally sustainable technologies to stimulate lateral branching of apple trees.}, number={6}, journal={HORTSCIENCE}, author={Vogel, Annie R. and Phillips, Byron and Clavet, Christopher D. and Kon, Thomas M.}, year={2024}, month={Jun}, pages={833–839} } @article{malladi_tonapi_kon_2023, title={Aminoethoxyvinylglycine Reduces Preharvest Fruit Drop and Fruit Ethylene Evolution in 'Red Delicious' Apple but Affects Fruit Size and Quality Inconsistently}, volume={58}, ISSN={["2327-9834"]}, DOI={10.21273/HORTSCI17287-23}, abstractNote={Aminoethoxyvinylglycine (AVG) is widely used in commercial apple (Malus ×domestica Borkh.) production to reduce preharvest fruit drop (PFD) and delay ripening for harvest management. Recently, the maximum allowable concentration of AVG was doubled (up to 264 mg⋅L−1). Reports of the relationship between the AVG concentration and fruit growth, size, and quality have been contradictory. We evaluated the relationship between the AVG concentration and PFD, fruit size, fruit quality, and expression of ethylene signaling-related and cell wall modification-related genes. Experiments were conducted in 2019 and 2020 using mature ‘Red Delicious’ in western North Carolina. The AVG treatments [0 and 132 (AVG-1x) and 264 mg⋅L−1 (AVG-2x)] were applied 3 weeks before the expected harvest. The AVG treatments reduced fruit drop and internal ethylene concentration relative to the control in both years. There was no difference in drop between AVG-1x and AVG-2x applications. Only in 2020 did AVG treatments delay fruit softening and starch hydrolysis and reduce soluble solids concentration. There were no effects on red fruit color development. Fruit size was unaffected by AVG in 2019, but it was reduced in 2020 with the AVG-2x application. AVG reduced ethylene synthesis and altered signaling, evidenced by decreased relative expression of genes related to ethylene signaling (ARGOS1, ARGOS2). AVG applications also reduced the expression of EXPA8;1, suggesting that reduced cell wall disassembly was associated with a reduction in fruit softening. These results indicate that preharvest applications of 132 mg⋅L−1 AVG effectively reduced PFD via altering ethylene evolution and signaling. Use of a higher AVG concentration was of limited benefit.}, number={11}, journal={HORTSCIENCE}, author={Malladi, Anish and Tonapi, Krittika V. and Kon, Thomas M.}, year={2023}, month={Nov}, pages={1410–1417} } @article{kon_clavet_2023, title={Enhancing Red Fruit Coloration of Apples in the Southeastern US with Reflective Fabrics}, volume={9}, ISSN={["2311-7524"]}, DOI={10.3390/horticulturae9101125}, abstractNote={For some apple cultivars, inadequate red fruit color development can reduce crop value. The use of reflective groundcovers has been demonstrated to improve red coloration in apples in other regions, but evaluation in the southeastern USA has been limited. To address this, we compared the performance of multiple reflective groundcovers in 2018 and 2020 on mature ‘Fuji’ trees in Edneyville, NC, USA. Woven reflective (Extenday® DayBright, Lumilys® WH100, Beltech PD2911, and Belton experimental), mylar, and sod groundcovers were deployed ~5 weeks before anticipated harvest. The effects of the treatment on light reflectance (photosynthetically active and UV radiation), fruit color, fruit quality, and crop value were determined. Across both years of evaluation, reflective groundcovers were consistent in increasing the reflectance of photosynthetically active radiation. However, only Extenday® DayBright consistently increased reflected UV radiation (250–400 nm), red fruit coloration at commercial harvest, and crop value. Fruit maturity and sunburn incidence were not influenced by any treatment in both years. Reflected UV light quality was not characterized, but it is clear that UV250–400nm reflectance intensity is critical to enhance ‘Fuji’ fruit color development. Growers in the southeastern US can use reflective groundcovers to enhance red fruit coloration to meet market demands.}, number={10}, journal={HORTICULTURAE}, author={Kon, Thomas M. and Clavet, Christopher D.}, year={2023}, month={Oct} } @article{nieto_wallis_clements_sazo_kahlke_kon_robinson_2023, title={Evaluation of Computer Vision Systems and Applications to Estimate Trunk Cross-Sectional Area, Flower Cluster Number, Thinning Efficacy and Yield of Apple}, volume={9}, ISSN={["2311-7524"]}, DOI={10.3390/horticulturae9080880}, abstractNote={Precision crop load management of apple requires counting fruiting structures at various times during the year to guide management decisions. The objective of the current study was to evaluate the accuracy of and compare different commercial computer vision systems and computer applications to estimate trunk cross-sectional area (TCSA), flower cluster number, thinning efficacy, and yield estimation. These studies evaluated two companies that offer different vision systems in a series of trials across 23 orchards in four states. Orchard Robotics uses a proprietary camera system, and Pometa (previously Farm Vision) uses a cell phone camera system. The cultivars used in the trials were ‘NY1’, ‘NY2’, ‘Empire’, ‘Granny Smith’, ‘Gala’, ‘Fuji’, and ‘Honeycrisp’. TCSA and flowering were evaluated with the Orchard Robotics camera in full rows. Flowering, fruit set, and yield estimation were evaluated with Pometa. Both systems were compared with manual measurements. Our results showed a positive linear correlation between the TCSA with the Orchard Robotics vision system and manual measurements, but the vision system underestimated the TCSA in comparison with the manual measurements (R2s between 0.5 and 0.79). Both vision systems showed a positive linear correlation between nubers of flowers and manual counts (R2s between 0.5 and 0.95). Thinning efficacy predictions (in June) were evaluated using the fruit growth rate model, by comparing manual measurements and the MaluSim computer app with the computer vision system of Pometa. Both systems showed accurate predictions when the numbers of fruits at harvest were lower than 200 fruit/tree, but our results suggest that, when the numbers of fruits at harvest were higher than 200 fruit/tree, both methods overestimated final fruit numbers per tree when compared with final fruit numbers at harvest (R2s 0.67 with both systems). Yield estimation was evaluated just before harvest (August) with the Pometa system. Yield estimation was accurate when fruit numbers were fewer than 75 fruit per tree, but, when the numbers of fruit at harvest were higher than 75 fruit per tree, the Pometa vision system underestimated the final yield (R2 = 0.67). Our results concluded that the Pometa system using a smartphone offered advantages such as low cost, quick access, simple operation, and accurate precision. The Orchard Robotics vision system with an advanced camera system provided more detailed and accurate information in terms of geo-referenced information for individual trees. Both vision systems evaluated are still in early development and have the potential to provide important information for orchard managers to improve crop load management decisions.}, number={8}, journal={HORTICULTURAE}, author={Nieto, Luis Gonzalez and Wallis, Anna and Clements, Jon and Sazo, Mario Miranda and Kahlke, Craig and Kon, Thomas M. and Robinson, Terence L.}, year={2023}, month={Aug} } @article{kon_clavet_clarke_2023, title={Organic Aminoethoxyvinylglycine Is an Effective Alternative for Reducing Apple Preharvest Drop}, volume={58}, ISSN={["2327-9834"]}, DOI={10.21273/HORTSCI17115-23}, abstractNote={Organic apple (Malus ×domestica Borkh.) growers lack effective strategies to manage preharvest drop. For susceptible cultivars, yield losses caused by preharvest drop can exceed 30% at the beginning of harvest. To address this issue, a formulation of aminoethoxyvinylglyine (AVG) designed for organic use was developed and compared with a commercially available AVG formulation. We evaluated the effects and interactions of the AVG formulation and application number on preharvest drop and fruit maturity in 2017 and 2018. We selected 30 pairs of mature ‘Oregon Spur II Red Delicious’/‘M. 111’ trees planted at the Mountain Horticultural Crops Research and Extension Center in Mills River, NC, USA. Trees were planted with spacing of 2.7 × 6.1 m, trained to a central leader, and received plant protectant sprays that adhered to local recommendations throughout the growing season. Both AVG formulations were applied at 132 mg⋅L−1 at 3 or 3 + 1 weeks before the anticipated harvest. An untreated control was also included for comparison. The experiment had six replicates and a randomized complete block design with a 2 × 2 augmented factorial treatment structure. A one-way analysis of variance was performed and single degree of freedom contrasts were used to compare treatment groups of interest. During both years, organic and conventional AVG were equally effective for reducing preharvest drop and delaying fruit softening and starch hydrolysis at harvest. During one year, increasing the number of applications of AVG reduced cumulative fruit drop, delayed fruit softening at harvest, and reduced internal ethylene concentrations. Inconsistencies in responses across years may be explained, in part, by abnormally warm temperatures observed in 2018. AVG approved for organic use appears to be a promising preharvest drop management technology with efficacy similar to that of conventional AVG.}, number={7}, journal={HORTSCIENCE}, author={Kon, Thomas M. and Clavet, Christopher D. and Clarke, Gregory G.}, year={2023}, month={Jul}, pages={733–738} } @article{larson_perkins-veazie_ma_kon_2023, title={Quantification and Prediction with Near Infrared Spectroscopy of Carbohydrates throughout Apple Fruit Development}, volume={9}, ISSN={["2311-7524"]}, DOI={10.3390/horticulturae9020279}, abstractNote={Carbohydrates play a key role in apple fruit growth and development. Carbohydrates are needed for cell division/expansion, regulate fruitlet abscission, and influence fruit maturation and quality. Current methods to quantify fruit carbohydrates are labor intensive and expensive. We quantified carbohydrates throughout a growing season in two cultivars and evaluated the use of near infrared spectroscopy (NIR) to predict apple carbohydrate content throughout changes in fruit development. Carbohydrates were quantified with high performance liquid chromatography (HPLC) at five timepoints between early fruitlet growth and harvest in ‘Gala’ and ‘Red Delicious’ apples. NIR spectra was collected for freeze-dried fruit samples using a benchtop near infrared spectrometer. Sorbitol was the major carbohydrate early in the growing season (~40% of total carbohydrates). However, the relative contribution of sorbitol to total carbohydrates rapidly decreased by 59 days after full bloom (<10%). The proportion of fructose to total carbohydrates increased throughout fruit development (40–50%). Three distinct periods of fruit development, early, mid-season, and late, were found over all sampling dates using principal component analysis. The first (PC1) and second (PC2) principal components accounted for 90% of the variation in the data, samples separated among sampling date along PC1. Partial least squares regression was used to build the models by calibrating carbohydrates quantified with HPLC and measured reflectance spectra. The NIR models reliably predicted the content of fructose, glucose, sorbitol, sucrose, starch, and total soluble sugars for both ‘Gala’ and ‘Red Delicious’; r2 ranged from 0.60 to 0.96. These results show that NIR can accurately estimate carbohydrates throughout the growing season and offers an efficient alternative to liquid or gas chromatography.}, number={2}, journal={HORTICULTURAE}, author={Larson, James E. and Perkins-Veazie, Penelope and Ma, Guoying and Kon, Thomas M.}, year={2023}, month={Feb} } @article{robinson_gonzalez_cheng_ziang_peck_arnoldussen_gomez_guerra_sazo_kahlke_et al._2023, title={Studies in precision crop load management of apple}, volume={1366}, ISSN={["2406-6168"]}, DOI={10.17660/ActaHortic.2023.1366.25}, journal={XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON INNOVATIVE PERENNIAL CROPS MANAGEMENT}, author={Robinson, T. L. and Gonzalez, L. and Cheng, L. and Ziang, Y. and Peck, G. and Arnoldussen, B. and Gomez, M. and Guerra, M. and Sazo, Mario Miranda and Kahlke, C. and et al.}, year={2023}, pages={219–225} } @article{larson_kon_2023, title={Vis/NIR spectroscopy is a promising tool to predict fruit set and chemical thinner response}, volume={1360}, ISSN={["2406-6168"]}, DOI={10.17660/ActaHortic.2023.1360.32}, journal={XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: III INTERNATIONAL SYMPOSIUM ON MECHANIZATION, PRECISION HORTICULTURE, AND ROBOTICS: PRECISION AND DIGITAL HORTICULTURE IN FIELD ENVIRONMENTS}, author={Larson, J. E. and Kon, T. M.}, year={2023}, pages={253–257} } @article{larson_malladi_kon_2023, title={Xylem Functionality Is Not a Direct Indicator of Apple Preharvest Fruit Drop}, volume={148}, ISSN={["2327-9788"]}, DOI={10.21273/JASHS05302-23}, abstractNote={Apple (Malus ×domestica) growers can incur significant economic losses when fruit drop before they can be harvested [preharvest fruit drop (PFD)]. In some years and cultivars, more than 30% of potential yield can be lost. Growers frequently apply plant bioregulators to reduce PFD, either via delay in maturity [aminoethoxyvinylglycine (AVG), 1-methylcycolpropene] or via inhibition in production of cell hydrolysis enzymes in the fruit pedicel [naphthalene acetic acid (NAA)]. Finding a physiological indicator of PFD would allow growers to assess the susceptibility of fruit to PFD. Due to its lignification, xylem is believed to be the last tissue to break down in the fruit pedicel, leading to PFD. To determine whether loss in xylem functionality can be used as an indicator of PFD potential, studies were conducted in 2020 and 2021 with ‘Red Delicious’ treated with AVG (132 µL·L−1), NAA (10 µL·L−1), and an ethylene-producing compound [ethephon (150 µL·L−1 in 2020, 200 µL·L−1 in 2021)] to generate a range of PFD potentials. Xylem functionality was assessed in the fruit cortex. Internal ethylene content (IEC), fruit maturity indices, and PFD rates were quantified weekly throughout the harvest period. Expression of genes encoding for cell hydrolysis enzymes (MdEG1 and MdPG2) was quantified to relate xylem functionality to fruit abscission mechanisms. In 2020 and 2021, AVG reduced PFD compared with the untreated control by decreasing IEC. Although ethephon did not result in higher PFD than untreated fruit, NAA reduced PFD in 2020 but not 2021. For all treatments in both years, there was a linear decrease in xylem functionality throughout the measurement period. Cumulative PFD exponentially decreased as xylem functionality neared zero and the climacteric rise in ethylene began. Concurrent with the rise in IEC and PFD was an increase in the expression of MdEG1 and MdPG2 in the fruit pedicel of the control compared with AVG-treated fruit. AVG-treated fruit lost xylem functionality at a similar rate to the untreated control but had lower expression of MdEG1 and MdPG2. These results indicate that xylem functionality is not a sole direct indicator of PFD. The concurrent increase in PFD and expression of MdEG1/MdPG2 supports previous research indicating that these two genes may serve as potential markers for PFD.}, number={3}, journal={JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE}, author={Larson, James E. and Malladi, Anish and Kon, Thomas M.}, year={2023}, month={May}, pages={117-+} } @article{allen_kon_sherif_2021, title={Evaluation of Blossom Thinning Spray Timing Strategies in Apple}, volume={7}, ISSN={["2311-7524"]}, DOI={10.3390/horticulturae7090308}, abstractNote={In the eastern USA and several other apple-growing regions, apple blossom thinning using lime sulfur is a relatively new crop load management strategy. This study sought to evaluate how application timing of lime sulfur + stylet oil blossom thinning sprays would influence thinning efficacy and crop safety of ‘Gala’ apples. This project occurred at two locations in the USA, Winchester, Virginia, and Mills River, North Carolina, during the 2019 growing season. Two main timing strategies were assessed: (1) model-guided sprays with the pollen tube growth model (PTGM), (2) fixed spray intervals with the first spray applied at a specified percentage of open bloom (20% vs. 80%), and the second spray applied at a reapplication interval (48 h vs. 72 h). Model-guided and 20% open bloom + 48-h treatments reduced fruit set and increased fruit weight, diameter, and length at both sites. Treatments with a delayed first spray at 80% open bloom or a more extended second reapplication of 72 h were generally ineffective. There was no conclusive evidence that lime sulfur + stylet oil blossom thinning spray timing influenced russet incidence/severity or leaf phytotoxicity. This study demonstrated that effective and safe blossom thinning can be obtained from applying two sprays at 20% open bloom and 48 h thereafter or using the PTGM.}, number={9}, journal={HORTICULTURAE}, author={Allen, W. Chester and Kon, Tom and Sherif, Sherif M.}, year={2021}, month={Sep} } @article{kon_schupp_winzeler_schupp_2020, title={Screening Thermal Shock as an Apple Blossom Thinning Method. II. Pollen Tube Growth and Spur Leaf Injury in Response to Temperature and Duration of Thermal Shock}, volume={55}, ISSN={["2327-9834"]}, DOI={10.21273/HORTSCI14619-19}, abstractNote={Blossom thinning can confer significant benefits to apple growers, including increased fruit size and annual bearing. However, current blossom thinning practices can damage spur leaves and/or fruit. We evaluated the use of short duration forced heated air treatments [thermal shock (TS)] as a blossom thinning strategy for ‘York Imperial’. Using a variable-temperature heat gun, TS treatments were applied to solitary blossoms 24 hours after pollination. Effects of output temperature (five levels) and treatment duration (four levels) were evaluated using a completely randomized design with a factorial treatment structure. Short duration treatments (0.5 and 1.0 seconds) were ineffective for arresting pollen tube growth in vivo. TS temperature required to inhibit stylar pollen tube growth was inconsistent across years. In 2014, TS temperatures ≥56 °C inhibited pollen tubes from reaching the style base at 2.0 and 4.0 second durations. However, in 2015, TS temperatures ≥81 °C at 4.0 seconds prevented pollen tubes from reaching the style base. Inconsistent effects of TS across years were attributed to treatments being applied too late due to optimal conditions for pollen tube growth during the intervening 24-hour period after pollination. Excessive injury to spur leaf tissue was observed at temperatures higher than 84 °C and 70 °C (2.0 and 4.0 seconds, respectively). Pollen tube growth was reduced or arrested at temperature and duration combinations that caused minimal visible injury to spur leaves. Identifying and exploiting structural differences between apple blossoms and vegetative spur leaves may provide insight for the future development of TS or other attempts at developing selective thinning technologies.}, number={5}, journal={HORTSCIENCE}, author={Kon, Thomas M. and Schupp, Melanie A. and Winzeler, Hans E. and Schupp, James R.}, year={2020}, month={May}, pages={632–636} }