@misc{nguyen_ramamoorthy_sahoo_zheng_faller_straub_dominguez_shea_dokholyan_de simone_et al._2021, title={Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis}, volume={121}, ISSN={["1520-6890"]}, DOI={10.1021/acs.chemrev.0c01122}, abstractNote={Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.}, number={4}, journal={CHEMICAL REVIEWS}, author={Nguyen, Phuong H. and Ramamoorthy, Ayyalusamy and Sahoo, Bikash R. and Zheng, Jie and Faller, Peter and Straub, John E. and Dominguez, Laura and Shea, Joan-Emma and Dokholyan, Nikolay V and De Simone, Alfonso and et al.}, year={2021}, month={Feb}, pages={2545–2647} } @misc{everett_flores_henscheid_lagergren_larripa_li_nardini_nguyen_pitman_rutter_2020, title={A tutorial review of mathematical techniques for quantifying tumor heterogeneity}, volume={17}, ISSN={["1551-0018"]}, DOI={10.3934/mbe.2020207}, abstractNote={Intra-tumor and inter-patient heterogeneity are two challenges in developing mathematical models for precision medicine diagnostics. Here we review several techniques that can be used to aid the mathematical modeller in inferring and quantifying both sources of heterogeneity from patient data. These techniques include virtual populations, nonlinear mixed effects modeling, non-parametric estimation, Bayesian techniques, and machine learning. We create simulated virtual populations in this study and then apply the four remaining methods to these datasets to highlight the strengths and weak-nesses of each technique. We provide all code used in this review at https://github.com/jtnardin/Tumor-Heterogeneity/ so that this study may serve as a tutorial for the mathematical modelling community. This review article was a product of a Tumor Heterogeneity Working Group as part of the 2018-2019 Program on Statistical, Mathematical, and Computational Methods for Precision Medicine which took place at the Statistical and Applied Mathematical Sciences Institute.}, number={4}, journal={MATHEMATICAL BIOSCIENCES AND ENGINEERING}, author={Everett, Rebecca and Flores, Kevin B. and Henscheid, Nick and Lagergren, John and Larripa, Kamila and Li, Ding and Nardini, John T. and Nguyen, Phuong T. T. and Pitman, E. Bruce and Rutter, Erica M.}, year={2020}, pages={3660–3709} }