Thomas Theis Kempf, N., Koerber, R., Plaumann, M., Pravdivtsev, A. N., Engelmann, J., Boldt, J., … Buckenmaier, K. (2024). 13C MRI of hyperpolarized pyruvate at 120 μT. SCIENTIFIC REPORTS, 14(1). https://doi.org/10.1038/s41598-024-54770-x Nantogma, S., Maissin, H., Adelabu, I., Abdurraheem, A., Nelson, C., Chukanov, N. V., … Chekmenev, E. Y. (2024, January 10). Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1-13C]Pyruvate. ACS SENSORS, Vol. 1. https://doi.org/10.1021/acssensors.3c02075 Schmidt, A. B., Adelabu, I., Nelson, C., Nantogma, S., Kiselev, V. G., Zaitsev, M., … Chekmenev, E. Y. (2023). C-13 Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 145(20), 11121–11129. https://doi.org/10.1021/jacs.3c00776 Mandzhieva, I., Adelabu, I., Nantogma, S., Chekmenev, E. Y., & Theis, T. (2023). Delivering Robust Proton-Only Sensing of Hyperpolarized [1,2-13C2]-Pyruvate Using Broad-Spectral-Range Nuclear Magnetic Resonance Pulse Sequences. ACS SENSORS, 8(11), 4101–4110. https://doi.org/10.1021/acssensors.3c01296 Adelabu, I., Chowdhury, M. R. H., Nantogma, S., Oladun, C., Ahmed, F., Stilgenbauer, L., … Chekmenev, E. Y. (2023). Efficient SABRE-SHEATH Hyperpolarization of Potent Branched-Chain-Amino-Acid Metabolic Probe [1-C-13]ketoisocaproate. METABOLITES, 13(2). https://doi.org/10.3390/metabo13020200 Lohmann, L., Lehmkuhl, S., Fleischer, S., Rosen, M. S., Chekmenev, E. Y., Theis, T., … Appelt, S. (2023). Exploring synchrony and chaos of parahydrogen-pumped two-compartment radio-frequency amplification by stimulated emission of radiation. PHYSICAL REVIEW A, 108(2). https://doi.org/10.1103/PhysRevA.108.022806 Browning, A., MacCulloch, K., Bedoya, D. G., Dedesma, C., Goodson, B. M., Rosen, M. S., … Theis, T. (2023, March 20). Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-13C]pyruvate in vivo. ChemRxiv. https://doi.org/10.26434/chemrxiv-2023-4dqkx Macculloch, K., Browning, A., Bedoya, D. O. G., Mcbride, S. J., Abdulmojeed, M. B., Dedesma, C., … Theis, T. (2023). Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN, 16-17. https://doi.org/10.1016/j.jmro.2023.100129 MacCulloch, K., Browning, A., Guarin Bedoya, D. O., McBride, S. J., Abdulmojeed, M. B., Dedesma, C., … Theis, T. (2023). Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-13C]pyruvate in vivo. SSRN. https://doi.org/10.2139/ssrn.4504262 Nelson, C., Schmidt, A. B., Adelabu, I., Nantogma, S., Kiselev, V. G., Abdurraheem, A., … Chekmenev, E. Y. (2023). Innentitelbild: Parahydrogen‐Induced Carbon‐13 Radiofrequency Amplification by Stimulated Emission of Radiation (Angew. Chem. 5/2023). Angewandte Chemie. https://doi.org/10.1002/ange.202218484 Nelson, C., Schmidt, A. B., Adelabu, I., Nantogma, S., Kiselev, V. G., Abdurraheem, A., … Chekmenev, E. Y. (2023). Inside Cover: Parahydrogen‐Induced Carbon‐13 Radiofrequency Amplification by Stimulated Emission of Radiation (Angew. Chem. Int. Ed. 5/2023). Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202218484 Pravdivtsev, A. N., Buckenmaier, K., Kempf, N., Stevanato, G., Scheffler, K., Engelmann, J., … Theis, T. (2023, April 4). LIGHT-SABRE Hyperpolarizes 1-13C-Pyruvate Continuously without Magnetic Field Cycling. JOURNAL OF PHYSICAL CHEMISTRY C, Vol. 4. https://doi.org/10.1021/acs.jpcc.3c01128 Pravdivtsev, A. N., Buckenmaier, K., Kempf, N., Stevanato, G., Scheffler, K., Engelmann, J., … Theis, T. (2023). LIGHT-SABRE hyperpolarizes 1-13C-pyruvate continuously, without magnetic field cycling. ArXiv. https://doi.org/10.48550/arXiv.2302.09299 MacCulloch, K., Browning, A., TomHon, P., Lehmkuhl, S., Chekmenev, E. Y., & Theis, T. (2023, May 10). Parahydrogen in Reversible Exchange Induces Long-Lived 15N Hyperpolarization of Anticancer Drugs Anastrozole and Letrozole. ANALYTICAL CHEMISTRY, Vol. 5. https://doi.org/10.1021/acs.analchem.2c04817 Nelson, C., Schmidt, A. B., Adelabu, I., Nantogma, S., Kiselev, V. G., Abdurraheem, A., … Chekmenev, E. Y. (2023). Parahydrogen‐Induced Carbon‐13 Radiofrequency Amplification by Stimulated Emission of Radiation. Angewandte Chemie. https://doi.org/10.1002/ange.202215678 Duchowny, A., Denninger, J., Lohmann, L., Theis, T., Lehmkuhl, S., & Adams, A. (2023). SABRE Hyperpolarization with up to 200 bar Parahydrogen in Standard and Quickly Removable Solvents. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24(3). https://doi.org/10.3390/ijms24032465 Browning, A., Macculloch, K., TomHon, P., Mandzhieva, I., Chekmenev, E. Y., Goodson, B. M., … Theis, T. (2023). Spin dynamics of [1,2-C-13(2)]pyruvate hyperpolarization by parahydrogen in reversible exchange at micro Tesla fields. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 25(24), 16446–16458. https://doi.org/10.1039/D3CP00843F Schmidt, A. B., Maissin, H., Adelabu, I., Nantogma, S., Ettedgui, J., TomHon, P., … Chekmenev, E. Y. (2022, November 15). Catalyst-Free Aqueous Hyperpolarized [1-13C]Pyruvate Obtained by Re-Dissolution Signal Amplification by Reversible Exchange. ACS SENSORS, Vol. 11. https://doi.org/10.1021/acssensors.2c01715 Schmidt, A. B., Bowers, C. R., Buckenmaier, K., Chekmenev, E. Y., Maissin, H., Eills, J., … Hoevener, J.-B. (2022, January 1). Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. ANALYTICAL CHEMISTRY, Vol. 1. https://doi.org/10.1021/acs.analchem.1c04863 Nantogma, S., Eriksson, S. L., Adelabu, I., Mandzhieva, I., Browning, A., TomHon, P., … Chekmenev, E. Y. (2022, November 28). Interplay of Near-Zero-Field Dephasing, Rephasing, and Relaxation Dynamics and [1-C-13]Pyruvate Polarization Transfer Efficiency in Pulsed SABRE-SHEATH. JOURNAL OF PHYSICAL CHEMISTRY A, Vol. 11. https://doi.org/10.1021/acs.jpca.2c07150 Nelson, C., Schmidt, A. B., Adelabu, I., Nantogma, S., Kiselev, V. G., Abdurraheem, A., … Chekmenev, E. Y. (2022, December 19). Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Vol. 62. https://doi.org/10.1002/anie.202215678 Mandzhieva, I., Adelabu, I., Chekmenev, E. Y., & Theis, T. (2022, November 22). Proton-Only Sensing of Hyperpolarized [1,2-C-13(2)]Pyruvate. ACS SENSORS, Vol. 11. https://doi.org/10.1021/acssensors.2c01608 Lehmkuhl, S., Fleischer, S., Lohmann, L., Rosen, M. S., Chekmenev, E. Y., Adams, A., … Appelt, S. (2022). RASER MRI: Magnetic Resonance Images formed Spontaneously exploiting Cooperative Nonlinear Interaction. ArXiv. https://doi.org/10.48550/arxiv.2203.00632 Lehmkuhl, S., Fleischer, S., Lohmann, L., Rosen, M. S., Chekmenev, E. Y., Ada, A., … Appelt, S. (2022). RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction. SCIENCE ADVANCES, 8(28). https://doi.org/10.1126/sciadv.abp8483 Adelabu, I., Ettedgui, J., Joshi, S. M., Nantogma, S., Chowdhury, M. R. H., McBride, S., … Chekmenev, E. Y. (2022, September 22). Rapid C-13 Hyperpolarization of the TCA Cycle Intermediate alpha-Ketoglutarate via SABRE-SHEATH. ANALYTICAL CHEMISTRY, Vol. 9. https://doi.org/10.1021/acs.analchem.2c02160 Brown, E. E., Mandzhieva, I., TomHon, P. M., Theis, T., & Castellano, F. N. (2022, November 14). Triplet Photosensitized para-Hydrogen Induced Polarization. ACS CENTRAL SCIENCE, Vol. 11. https://doi.org/10.1021/acscentsci.2c01003 TomHon, P. M., Han, S., Lehmkuhl, S., Appelt, S., Chekmenev, E. Y., Abolhasani, M., & Theis, T. (2021, October 26). A Versatile Compact Parahydrogen Membrane Reactor. CHEMPHYSCHEM, Vol. 10. https://doi.org/10.1002/cphc.202100667 Joalland, B., Theis, T., Appelt, S., & Chekmenev, E. Y. (2021, October 1). Background-Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Vol. 10. https://doi.org/10.1002/anie.202108939 Joalland, B., Theis, T., Appelt, S., & Chekmenev, E. Y. (2021). Background‐Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation. Angewandte Chemie, 9. https://doi.org/10.1002/ange.202108939 Lin, K., TomHon, P., Lehmkuhl, S., Laasner, R., Theis, T., & Blum, V. (2021, September 22). Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange. CHEMPHYSCHEM, Vol. 9. https://doi.org/10.1002/cphc.202100204 Lin, K., TomHon, P., Lehmkuhl, S., Laasner, R., Theis, T., & Blum, V. (2021, October 5). Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange. CHEMPHYSCHEM, Vol. 22, pp. 1937–1938. https://doi.org/10.1002/cphc.202100678 Lin, K., TomHon, P., Lehmkuhl, S., Laasner, R., Theis, T., & Blum, V. (2021). Front Cover: Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange (ChemPhysChem 19/2021). ChemPhysChem. https://doi.org/10.1002/cphc.202100677 MacCulloch, K., Tomhon, P., Browning, A., Akeroyd, E., Lehmkuhl, S., Chekmenev, E. Y., & Theis, T. (2021, June 20). Hyperpolarization of common antifungal agents with SABRE. MAGNETIC RESONANCE IN CHEMISTRY, Vol. 6. https://doi.org/10.1002/mrc.5187 Joalland, B., Theis, T., Appelt, S., & Chekmenev, E. Y. (2021). Innentitelbild: Background‐Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation (Angew. Chem. 50/2021). Angewandte Chemie, 11. https://doi.org/10.1002/ange.202113430 Joalland, B., Theis, T., Appelt, S., & Chekmenev, E. Y. (2021). Inside Cover: Background‐Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation (Angew. Chem. Int. Ed. 50/2021). Angewandte Chemie International Edition, 11. https://doi.org/10.1002/anie.202113430 Han, S., Ramezani, M., TomHon, P., Abdel-Latif, K., Epps, R. W., Theis, T., & Abolhasani, M. (2021). Intensified continuous extraction of switchable hydrophilicity solvents triggered by carbon dioxide. GREEN CHEMISTRY, 23(8), 2900–2906. https://doi.org/10.1039/D1GC00811K Arunkumar, N., Bucher, D. B., Turner, M. J., TomHon, P., Glenn, D., Lehmkuhl, S., … Walsworth, R. L. (2021). Micron-Scale NV-NMR Spectroscopy with Signal Amplification by Reversible Exchange. PRX Quantum, 2(1), 010305. https://doi.org/10.1103/PRXQuantum.2.010305 Adelabu, I., TomHon, P., Kabir, M. S. H., Nantogma, S., Abdulmojeed, M., Mandzhieva, I., … Chekmenev, E. Y. (2021, December 9). Order-Unity C-13 Nuclear Polarization of [1-C-13]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement. CHEMPHYSCHEM, Vol. 23. https://doi.org/10.1002/cphc.202100839 Appelt, S., Lehmkuhl, S., Fleischer, S., Joalland, B., Ariyasingha, N. M., Chekmenev, E. Y., & Theis, T. (2021). SABRE and PHIP pumped RASER and the route to chaos. Journal of Magnetic Resonance, 322, 106815. https://doi.org/10.1016/j.jmr.2020.106815 TomHon, P., Abdulmojeed, M., Adelabu, I., Nantogma, S., Kabir, M. S. H., Lehmkuhl, S., … Theis, T. (2021). Temperature Cycling Enables Efficient 13C SABRE-SHEATH Hyperpolarization and Imaging of [1-13C]Pyruvate. ChemRxiv. https://doi.org/10.26434/chemrxiv-2021-cpz32 TomHon, P., Abdulmojeed, M., Adelabu, I., Nantogma, S., Kabir, M. S. H., Lehmkuhl, S., … Theis, T. (2021, December 23). Temperature Cycling Enables Efficient C-13 SABRE-SHEATH Hyperpolarization and Imaging of [1-C-13]-Pyruvate. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol. 12. https://doi.org/10.1021/jacs.1c09581 Park, H., Zhang, G., Bae, J., Theis, T., Warren, W. S., & Wang, Q. (2020). Application of 15N2-Diazirines as a Versatile Platform for Hyperpolarization of Biological Molecules by d-DNP. Bioconjugate Chemistry, 31(3), 537–541. https://doi.org/10.1021/acs.bioconjchem.0c00028 TomHon, P., Akeroyd, E., Lehmkuhl, S., Chekmenev, E. Y., & Theis, T. (2020). Automated pneumatic shuttle for magnetic field cycling and parahydrogen hyperpolarized multidimensional NMR. Journal of Magnetic Resonance, 312, 106700. https://doi.org/10.1016/j.jmr.2020.106700 Arunkumar, N., Bucher, D. B., Turner, M. J., TomHon, P., Glenn, D., Lehmkuhl, S., … Walsworth, R. L. (2020). Micron-scale SABRE-enhanced NV-NMR Spectroscopy. ArXiv. https://doi.org/10.48550/arxiv.2006.03910 Micron-scale SABRE-enhanced NV-NMR Spectroscopy. (2020, June 6). Kovtunov, K. V., Koptyug, I. V., Fekete, M., Duckett, S. B., Theis, T., Joalland, B., & Chekmenev, E. Y. (2020). Parahydrogen‐Induced Hyperpolarization of Gases. Angewandte Chemie International Edition, 59(41), 17788–17797. https://doi.org/10.1002/anie.201915306 Joalland, B., Ariyasingha, N. M., Lehmkuhl, S., Theis, T., Appelt, S., & Chekmenev, E. Y. (2020). Parahydrogen‐Induced Radio Amplification by Stimulated Emission of Radiation. Angewandte Chemie International Edition, 59(22), 8654–8660. https://doi.org/10.1002/anie.201916597 Joalland, B., Ariyasingha, N. M., Lehmkuhl, S., Theis, T., Appelt, S., & Chekmenev, E. Y. (2020). Parahydrogen‐Induced Radio Amplification by Stimulated Emission of Radiation. Angewandte Chemie, 132(22), 8732–8738. https://doi.org/10.1002/ange.201916597 Kovtunov, K. V., Koptyug, I. V., Fekete, M., Duckett, S. B., Theis, T., Joalland, B., & Chekmenev, E. Y. (2020). Parawasserstoff‐induzierte Hyperpolarisation von Gasen. Angewandte Chemie, 132(41), 17940–17949. https://doi.org/10.1002/ange.201915306 Colell, J. F. P., Logan, A. W. J., Zhou, Z., Lindale, J. R., Laasner, R., Shchepin, R. V., … Theis, T. (2020). Rational ligand choice extends the SABRE substrate scope. Chemical Communications, 56(65), 9336–9339. https://doi.org/10.1039/d0cc01330g Lehmkuhl, S., Suefke, M., Kentner, A., Yen, Y.-F., Blümich, B., Rosen, M. S., … Theis, T. (2020). SABRE polarized low field rare-spin spectroscopy. The Journal of Chemical Physics, 152(18), 184202. https://doi.org/10.1063/5.0002412 Shchepin, R. V., Birchall, J. R., Chukanov, N. V., Kovtunov, K. V., Koptyug, I. V., Theis, T., … Chekmenev, E. Y. (2019). Hyperpolarizing Concentrated Metronidazole 15 NO 2 Group over Six Chemical Bonds with More than 15 % Polarization and a 20 Minute Lifetime. Chemistry – A European Journal, 25(37), 8829–8836. https://doi.org/10.1002/chem.201901192 Glachet, T., Marzag, H., Saraiva Rosa, N., Colell, J. F. P., Zhang, G., Warren, W. S., … Reboul, V. (2019). Iodonitrene in Action: Direct Transformation of Amino Acids into Terminal Diazirines and15N2-Diazirines and Their Application as Hyperpolarized Markers. Journal of the American Chemical Society, 141(34), 13689–13696. https://doi.org/10.1021/jacs.9b07035 Goodson, B. M., Kidd, B., Hövener, J.-B., Schröder, L., Theis, T., Whiting, N., & Chekmenev, E. Y. (2019). Nuclear Magnetic Resonance Spectroscopy Techniques: Hyperpolarization for Sensitivity Enhancement. In P. Worsfold, A. Townshend, C. Poole, & M. Miró (Eds.), Encyclopedia of Analytical Science (3rd ed., pp. 168–181). https://doi.org/10.1016/B978-0-12-409547-2.14072-7 Ariyasingha, N. M., Lindale, J. R., Eriksson, S. L., Clark, G. P., Theis, T., Shchepin, R. V., … Chekmenev, E. Y. (2019). Quasi-Resonance Fluorine-19 Signal Amplification by Reversible Exchange. The Journal of Physical Chemistry Letters, 10(15), 4229–4236. https://doi.org/10.1021/acs.jpclett.9b01505 Tanner, C. P. N., Lindale, J. R., Eriksson, S. L., Zhou, Z., Colell, J. F. P., Theis, T., & Warren, W. S. (2019). Selective hyperpolarization of heteronuclear singlet states via pulsed microtesla SABRE. The Journal of Chemical Physics, 151(4), 044201. https://doi.org/10.1063/1.5108644 Zhang, G., Colell, J. F. P., Glachet, T., Lindale, J. R., Reboul, V., Theis, T., & Warren, W. S. (2019). Terminal Diazirines Enable Reverse Polarization Transfer from 15 N 2 Singlets. Angewandte Chemie International Edition, 58(32), 11118–11124. https://doi.org/10.1002/anie.201904026 Zhang, G., Colell, J. F. P., Glachet, T., Lindale, J. R., Reboul, V., Theis, T., & Warren, W. S. (2019). Terminal Diazirines Enable Reverse Polarization Transfer from 15N2 Singlets. Angewandte Chemie. https://doi.org/10.1002/ange.201904026 Lindale, J. R., Eriksson, S. L., Tanner, C. P. N., Zhou, Z., Colell, J. F. P., Zhang, G., … Warren, W. S. (2019). Unveiling coherently driven hyperpolarization dynamics in signal amplification by reversible exchange. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08298-8 Bae, J., Zhou, Z., Theis, T., Warren, W. S., & Wang, Q. (2018). 15N4-1,2,4,5-tetrazines as potential molecular tags: Integrating bioorthogonal chemistry with hyperpolarization and unearthing para-N2. Science Advances, 4(3), eaar2978. https://doi.org/10.1126/sciadv.aar2978 Hövener, J.-B., Pravdivtsev, A. N., Kidd, B., Bowers, C. R., Glöggler, S., Kovtunov, K. V., … Chekmenev, E. Y. (2018). Parahydrogen-Based Hyperpolarization for Biomedicine. Angewandte Chemie International Edition, 57(35), 11140–11162. https://doi.org/10.1002/anie.201711842 Hövener, J.-B., Pravdivtsev, A. N., Kidd, B., Bowers, C. R., Glöggler, S., Kovtunov, K. V., … Chekmenev, E. Y. (2018). Parawasserstoff-basierte Hyperpolarisierung für die Biomedizin. Angewandte Chemie, 130(35), 11310–11333. https://doi.org/10.1002/ange.201711842 Theis, T., Ariyasingha, N. M., Shchepin, R. V., Lindale, J. R., Warren, W. S., & Chekmenev, E. Y. (2018). Quasi-Resonance Signal Amplification by Reversible Exchange. The Journal of Physical Chemistry Letters, 9(20), 6136–6142. https://doi.org/10.1021/acs.jpclett.8b02669 Shen, K., Logan, A. W. J., Colell, J. F. P., Bae, J., Ortiz, G. X., Jr., Theis, T., … Wang, Q. (2017). Cover Picture: Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long‐Lived SABRE‐Induced Hyperpolarization (Angew. Chem. Int. Ed. 40/2017). Angewandte Chemie International Edition. https://doi.org/10.1002/anie.201707296 Shen, K., Logan, A. W. J., Colell, J. F. P., Bae, J., Ortiz, G. X., Jr., Theis, T., … Wang, Q. (2017). Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long-Lived SABRE-Induced Hyperpolarization. Angewandte Chemie International Edition, 56(40), 12112–12116. https://doi.org/10.1002/anie.201704970 Shen, K., Logan, A. W. J., Colell, J. F. P., Bae, J., Ortiz, G. X., Jr., Theis, T., … Wang, Q. (2017). Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long‐Lived SABRE‐Induced Hyperpolarization. Angewandte Chemie, 129(40), 12280–12284. https://doi.org/10.1002/ange.201704970 Colell, J. F. P., Emondts, M., Logan, A. W. J., Shen, K., Bae, J., Shchepin, R. V., … Warren, W. S. (2017). Direct Hyperpolarization of Nitrogen-15 in Aqueous Media with Parahydrogen in Reversible Exchange. Journal of the American Chemical Society, 139(23), 7761–7767. https://doi.org/10.1021/jacs.7b00569 Colell, J. F. P., Logan, A. W. J., Zhou, Z., Shchepin, R. V., Barskiy, D. A., Ortiz, G. X., Jr., … Theis, T. (2017). Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange. The Journal of Physical Chemistry C, 121(12), 6626–6634. https://doi.org/10.1021/acs.jpcc.6b12097 Tayler, M. C. D., Theis, T., Sjolander, T. F., Blanchard, J. W., Kentner, A., Pustelny, S., … Budker, D. (2017). Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field. ArXiv. https://doi.org/10.48550/arxiv.1705.04489 Tayler, M. C. D., Theis, T., Sjolander, T. F., Blanchard, J. W., Kentner, A., Pustelny, S., … Budker, D. (2017). Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field. Review of Scientific Instruments, 88(9), 091101. https://doi.org/10.1063/1.5003347 Zhou, Z., Yu, J., Colell, J. F. P., Laasner, R., Logan, A., Barskiy, D. A., … Theis, T. (2017). Long-Lived 13C2 Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields. The Journal of Physical Chemistry Letters, 8(13), 3008–3014. https://doi.org/10.1021/acs.jpclett.7b00987 Shchepin, R. V., Jaigirdar, L., Theis, T., Warren, W. S., Goodson, B. M., & Chekmenev, E. Y. (2017). Spin Relays Enable Efficient Long-Range Heteronuclear Signal Amplification by Reversible Exchange. The Journal of Physical Chemistry C, 121(51), 28425–28434. https://doi.org/10.1021/acs.jpcc.7b11485 Barskiy, D. A., Shchepin, R. V., Tanner, C. P. N., Colell, J. F. P., Goodson, B. M., Theis, T., … Chekmenev, E. Y. (2017). The Absence of Quadrupolar Nuclei Facilitates Efficient13C Hyperpolarization via Reversible Exchange with Parahydrogen. ChemPhysChem, 18(12), 1493–1498. https://doi.org/10.1002/cphc.201700416 Shen, K., Logan, A. W. J., Colell, J. F. P., Bae, J., Ortiz, G. X., Jr., Theis, T., … Wang, Q. (2017). Titelbild: Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long‐Lived SABRE‐Induced Hyperpolarization (Angew. Chem. 40/2017). Angewandte Chemie. https://doi.org/10.1002/ange.201707296 Shchepin, R. V., Goodson, B. M., Theis, T., Warren, W. S., & Chekmenev, E. Y. (2017). Toward Hyperpolarized 19F Molecular Imaging via Reversible Exchange with Parahydrogen. ChemPhysChem, 18(15), 1961–1965. https://doi.org/10.1002/cphc.201700594 Shchepin, R. V., Barskiy, D. A., Coffey, A. M., Theis, T., Shi, F., Warren, W. S., … Chekmenev, E. Y. (2016). 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH. ACS Sensors, 1(6), 640–644. https://doi.org/10.1021/acssensors.6b00231 Zhou, Z., Claytor, K., Warren, W. S., & Theis, T. (2016). Accessing long lived 1H states via 2H couplings. Journal of Magnetic Resonance, 263, 108–115. https://doi.org/10.1016/j.jmr.2015.12.020 Theis, T., Ortiz, G. X., Logan, A. W. J., Claytor, K. E., Feng, Y., Huhn, W. P., … Warren, W. S. (2016). Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags. Science Advances, 2(3), e1501438–e1501438. https://doi.org/10.1126/sciadv.1501438 Logan, A. W. J., Theis, T., Colell, J. F. P., Warren, W. S., & Malcolmson, S. J. (2016). Hyperpolarization of Nitrogen-15 Schiff Bases by Reversible Exchange Catalysis with para-Hydrogen. Chemistry - A European Journal, 22(31), 10777–10781. https://doi.org/10.1002/chem.201602393 Barskiy, D. A., Shchepin, R. V., Coffey, A. M., Theis, T., Warren, W. S., Goodson, B. M., & Chekmenev, E. Y. (2016). Over 20%15N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe. Journal of the American Chemical Society, 138(26), 8080–8083. https://doi.org/10.1021/jacs.6b04784 Truong, M. L., Theis, T., Coffey, A. M., Shchepin, R. V., Waddell, K. W., Shi, F., … Chekmenev, E. Y. (2015). 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH. The Journal of Physical Chemistry C, 119(16), 8786–8797. https://doi.org/10.1021/acs.jpcc.5b01799 Shchepin, R. V., Truong, M. L., Theis, T., Coffey, A. M., Shi, F., Waddell, K. W., … Chekmenev, E. Y. (2015). Hyperpolarization of “Neat” Liquids by NMR Signal Amplification by Reversible Exchange. The Journal of Physical Chemistry Letters, 6(10), 1961–1967. https://doi.org/10.1021/acs.jpclett.5b00782 Theis, T., Truong, M. L., Coffey, A. M., Shchepin, R. V., Waddell, K. W., Shi, F., … Chekmenev, E. Y. (2015). Microtesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization. Journal of the American Chemical Society, 137(4), 1404–1407. https://doi.org/10.1021/ja512242d Claytor, K., Theis, T., Feng, Y., Yu, J., Gooden, D., & Warren, W. S. (2014). Accessing Long-Lived Disconnected Spin-1/2 Eigenstates through Spins > 1/2. Journal of the American Chemical Society, 136(43), 15118–15121. https://doi.org/10.1021/ja505792j Türschmann, P., Colell, J., Theis, T., Blümich, B., & Appelt, S. (2014). Analysis of parahydrogen polarized spin system in low magnetic fields. Physical Chemistry Chemical Physics, 16(29), 15411–15421. https://doi.org/10.1039/c4cp01807a Theis, T., Feng, Y., Wu, T., & Warren, W. S. (2014). Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance. The Journal of Chemical Physics, 140(1), 014201. https://doi.org/10.1063/1.4851337 Theis, T., Truong, M., Coffey, A. M., Chekmenev, E. Y., & Warren, W. S. (2014). LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization. Journal of Magnetic Resonance, 248, 23–26. https://doi.org/10.1016/j.jmr.2014.09.005 LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization. (2014). Journal of Magnetic Resonance. Retrieved from http://www.sciencedirect.com/science/article/pii/S1090780714002420 Emondts, M., Ledbetter, M. P., Pustelny, S., Theis, T., Patton, B., Blanchard, J. W., … Pines, A. (2014). Long-Lived Heteronuclear Spin-Singlet States in Liquids at a Zero Magnetic field. Phys. Rev. Lett., 112(7). https://doi.org/10.1103/physrevlett.112.077601 Feng, Y., Theis, T., Wu, T.-L., Claytor, K., & Warren, W. S. (2014). Long-lived polarization protected by symmetry. The Journal of Chemical Physics, 141(13), 134307. https://doi.org/10.1063/1.4896895 Claytor, K., Theis, T., Feng, Y., & Warren, W. (2014). Measuring long-lived 13C2 state lifetimes at natural abundance. Journal of Magnetic Resonance, 239, 81–86. https://doi.org/10.1016/j.jmr.2013.12.009 Theis, T., Blanchard, J. W., Butler, M. C., Ledbetter, M. P., Budker, D., & Pines, A. (2013). Chemical analysis using J-coupling multiplets in zero-field NMR. Chemical Physics Letters, 580, 160–165. https://doi.org/10.1016/j.cplett.2013.06.042 Colell, J., Türschmann, P., Glöggler, S., Schleker, P., Theis, T., Ledbetter, M., … Appelt, S. (2013). Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance. Phys. Rev. Lett., 110(13). https://doi.org/10.1103/physrevlett.110.137602 Blanchard, J. W., Ledbetter, M. P., Theis, T., Butler, M. C., Budker, D., & Pines, A. (2013). High-Resolution Zero-Field NMR J -Spectroscopy of Aromatic Compounds. J. Am. Chem. Soc., 135(9), 3607–3612. https://doi.org/10.1021/ja312239v Butler, M. C., Ledbetter, M. P., Theis, T., Blanchard, J. W., Budker, D., & Pines, A. (2013). Multiplets at zero magnetic field: The geometry of zero-field NMR. J. Chem. Phys., 138(18), 184202. https://doi.org/10.1063/1.4803144 Butler, M. C., Kervern, G., Theis, T., Ledbetter, M. P., Ganssle, P. J., Blanchard, J. W., … Pines, A. (2013). Parahydrogen-induced polarization at zero magnetic field. J. Chem. Phys., 138(23), 234201. https://doi.org/10.1063/1.4805062 Feng, Y., Theis, T., Liang, X., Wang, Q., Zhou, P., & Warren, W. S. (2013). Storage of Hydrogen Spin Polarization in Long-Lived 13 C 2 Singlet Order and Implications for Hyperpolarized Magnetic Resonance Imaging. J. Am. Chem. Soc., 135(26), 9632–9635. https://doi.org/10.1021/ja404936p Yacovitch, T. I., Garand, E., Kim, J. B., Hock, C., Theis, T., & Neumark, D. M. (2012). Vibrationally resolved transition state spectroscopy of the F + H2 and F + CH4 reactions. Faraday Discuss., 157, 399. https://doi.org/10.1039/c2fd20011b Theis, T., Ledbetter, M. P., Kervern, G., Blanchard, J. W., Ganssle, P. J., Butler, M. C., … Pines, A. (2012). Zero-Field NMR Enhanced by Parahydrogen in Reversible Exchange. J. Am. Chem. Soc., 134(9), 3987–3990. https://doi.org/10.1021/ja2112405 Ledbetter, M. P., Theis, T., Blanchard, J. W., Ring, H., Ganssle, P., Appelt, S., … Budker, D. (2011). Near-Zero-Field Nuclear Magnetic Resonance. Phys. Rev. Lett., 107(10). https://doi.org/10.1103/physrevlett.107.107601 Near-zero field magnetic resonance. (2011). Physical Review Letters. https://doi.org/https://doi.org/10.1103/PhysRevLett.107.107601 Theis, T., Ganssle, P., Kervern, G., Knappe, S., Kitching, J., Ledbetter, M. P., … Pines, A. (2011). Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nat Phys, 7(7), 571–575. https://doi.org/10.1038/nphys1986 Buback, M., Hesse, P., Junkers, T., Sergeeva, T., & Theis, T. (2008). PLP Labeling in ESR Spectroscopic Analysis of Secondary and Tertiary Acrylate Propagating Radicals. Macromolecules, 41(2), 288–291. https://doi.org/10.1021/ma702011q Buback, M., Hesse, P., Junkers, T., Theis, T., & Vana, P. (2007). Chain-Length-Dependent Termination in Acrylate Radical Polymerization Studied via Pulsed-Laser-Initiated RAFT Polymerization. Aust. J. Chem., 60(10), 779. https://doi.org/10.1071/ch07236 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH. https://doi.org/10.1021/acssensors.6b00231.s001 Direct Hyperpolarization of Nitrogen-15 in Aqueous Media with Parahydrogen in Reversible Exchange. https://doi.org/10.1021/jacs.7b00569.s001 Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange. https://doi.org/10.1021/acs.jpcc.6b12097.s002 Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange. https://doi.org/10.1021/acs.jpcc.6b12097.s001 Long-Lived 13C2 Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields. https://doi.org/10.1021/acs.jpclett.7b00987.s001