@misc{nguyen_zhang_liu_zhang_jin_taniguchi_miller_lindsey_2023, title={Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review}, volume={28}, ISSN={["1420-3049"]}, url={https://doi.org/10.3390/molecules28166132}, DOI={10.3390/molecules28166132}, abstractNote={Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium–microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known—each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or –OH or –OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.}, number={16}, journal={MOLECULES}, author={Nguyen, Kathy-Uyen and Zhang, Yunlong and Liu, Qihui and Zhang, Ran and Jin, Xiaohe and Taniguchi, Masahiko and Miller, Eric S. and Lindsey, Jonathan S.}, year={2023}, month={Aug} } @article{wu_dou_nguyen_eppley_siwawannapong_zhang_lindsey_2022, title={Tailoring the AIE Chromogen 2-(2-Hydroxyphenyl)benzothiazole for Use in Enzyme-Triggered Molecular Brachytherapy}, volume={27}, ISSN={["1420-3049"]}, DOI={10.3390/molecules27248682}, abstractNote={A targeted strategy for treating cancer is antibody-directed enzyme prodrug therapy, where the enzyme attached to the antibody causes conversion of an inactive small-molecule prodrug into an active drug. A limitation may be the diffusion of the active drug away from the antibody target site. A related strategy with radiotherapeutics entails enzymatically promoted conversion of a soluble to insoluble radiotherapeutic agent, thereby immobilizing the latter at the target site. Such a molecular brachytherapy has been scarcely investigated. In distinct research, the advent of molecular designs for aggregation-induced emission (AIE) suggests translational use in molecular brachytherapy. Here, several 2-(2-hydroxyphenyl)benzothiazole substrates that readily aggregate in aqueous solution (and afford AIE) were elaborated in this regard. In particular, (1) the 2-(2-hydroxyphenyl) unit was derivatized to bear a pegylated phosphodiester that imparts water solubility yet undergoes enzymatic cleavage, and (2) a p-phenol unit was attached to the benzo moiety to provide a reactive site for final-step iodination (here examined with natural abundance iodide). The pegylated phosphodiester-iodinated benzothiazole undergoes conversion from aqueous-soluble to aqueous-insoluble upon treatment with a phosphatase or phosphodiesterase. The aggregation is essential to molecular brachytherapy, whereas the induced emission of AIE is not essential but provides a convenient basis for research development. Altogether, 21 compounds were synthesized (18 new, 3 known via new routes). Taken together, blending biomedical strategies of enzyme prodrug therapy with materials chemistry concerning substances that undergo AIE may comprise a step forward on the long road toward molecular brachytherapy.}, number={24}, journal={MOLECULES}, author={Wu, Zhiyuan and Dou, Jinghuai and Nguyen, Kathy-Uyen and Eppley, Jayden C. and Siwawannapong, Kittipan and Zhang, Yunlong and Lindsey, Jonathan S.}, year={2022}, month={Dec} } @article{nguyen_zhang_taniguchi_lindsey_2021, title={Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts}, volume={7}, ISSN={["1751-1097"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85110167749&partnerID=MN8TOARS}, DOI={10.1111/php.13474}, abstractNote={Abstract}, number={6}, journal={PHOTOCHEMISTRY AND PHOTOBIOLOGY}, author={Nguyen, Kathy-Uyen and Zhang, Ran and Taniguchi, Masahiko and Lindsey, Jonathan S.}, year={2021}, month={Jul} } @article{jin_zhang_zhang_nguyen_lindsey_miller_2021, title={Identification of Putative Biosynthetic Gene Clusters for Tolyporphins in Multiple Filamentous Cyanobacteria}, volume={11}, ISSN={["2075-1729"]}, DOI={10.3390/life11080758}, abstractNote={Tolyporphins A–R are unusual tetrapyrrole macrocycles produced by the non-axenic filamentous cyanobacterium HT-58-2. A putative biosynthetic gene cluster for biosynthesis of tolyporphins (here termed BGC-1) was previously identified in the genome of HT-58-2. Here, homology searching of BGC-1 in HT-58-2 led to identification of similar BGCs in seven other filamentous cyanobacteria, including strains Nostoc sp. 106C, Nostoc sp. RF31YmG, Nostoc sp. FACHB-892, Brasilonema octagenarum UFV-OR1, Brasilonema octagenarum UFV-E1, Brasilonema sennae CENA114 and Oculatella sp. LEGE 06141, suggesting their potential for tolyporphins production. A similar gene cluster (BGC-2) also was identified unexpectedly in HT-58-2. Tolyporphins BGCs were not identified in unicellular cyanobacteria. Phylogenetic analysis based on 16S rRNA and a common component of the BGCs, TolD, points to a close evolutionary history between each strain and their respective tolyporphins BGC. Though identified with putative tolyporphins BGCs, examination of pigments extracted from three cyanobacteria has not revealed the presence of tolyporphins. Overall, the identification of BGCs and potential producers of tolyporphins presents a collection of candidate cyanobacteria for genetic and biochemical analysis pertaining to these unusual tetrapyrrole macrocycles.}, number={8}, journal={LIFE-BASEL}, author={Jin, Xiaohe and Zhang, Yunlong and Zhang, Ran and Nguyen, Kathy-Uyen and Lindsey, Jonathan S. and Miller, Eric S.}, year={2021}, month={Aug} } @article{zhang_wu_takashima_nguyen_matsumoto_lindsey_2020, title={Engineering of an archaeal phosphodiesterase to trigger aggregation-induced emission (AIE) of synthetic substrates}, volume={44}, ISSN={["1369-9261"]}, DOI={10.1039/d0nj03208e}, abstractNote={Aggregation-induced emission (AIE) probes that can be triggered by enzymatic activity are valuable for applications across the life sciences.}, number={33}, journal={NEW JOURNAL OF CHEMISTRY}, author={Zhang, Yunlong and Wu, Zhiyuan and Takashima, Ippei and Nguyen, Kathy-Uyen and Matsumoto, Nobuyuki and Lindsey, Jonathan S.}, year={2020}, month={Sep}, pages={14266–14277} }