Vincent Lindsay Rivera, R. M., Ferrin, Z. R., & Lindsay, V. N. G. (2024, May 29). Iron-Catalyzed Oxidative Rearrangement of Cyclopropanone Hemiaminals: General Access to Pyrroloindolones from Indoles. ORGANIC LETTERS, Vol. 5. https://doi.org/10.1021/acs.orglett.4c01528 Thomas, A., Wilkerson-Hill, S., Roberts, C., & Lindsay, V. (2024, April 24). Rising Stars in Organic Synthesis, Session 3. https://doi.org/10.52843/cassyni.nknztt Jang, Y., Deng, W., Sprague, I. S. S., & Lindsay, V. N. G. (2023, July 6). Divergent Synthesis of & beta;-Fluoroamides via Silver-Catalyzed Oxidative Deconstruction of Cyclopropanone Hemiaminals. ORGANIC LETTERS, Vol. 7. https://doi.org/10.1021/acs.orglett.3c01992 Jung, M., Muir, J. E., & Lindsay, V. N. G. (2023). Expedient synthesis of spiro[3.3]heptan-1-ones via strain-relocating semipinacol rearrangements. TETRAHEDRON, 134. https://doi.org/10.1016/j.tet.2023.133296 Jung, M., & Lindsay, V. N. G. (2022). One-Pot Synthesis of Strain-Release Reagents from Methyl Sulfones br. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144(11), 4764–4769. https://doi.org/10.1021/jacs.2c00923 Rivera, R. M., Burton, N., Call, L., Tomat, M., & Lindsay, V. (2022, May 4). Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates. https://doi.org/10.26434/chemrxiv-2022-l60sc Rivera, R. M., Burton, N. R., Call, L. D., Tomat, M. A., & Lindsay, V. N. G. (2022). Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates. ORGANIC LETTERS, 24(23), 4275–4280. https://doi.org/10.1021/acs.orglett.2c01627 Poteat, C., & Lindsay, V. (2021, June 29). Enantioselective Synthesis of Alkylidenecyclobutanones via Formal Vinylidene Insertion into Cyclopropanone Equivalents (Vol. 6). Vol. 6. https://doi.org/10.33774/chemrxiv-2021-kv6gx Poteat, C., & Lindsay, V. (2021, June 29). Enantioselective Synthesis of Alkylidenecyclobutanones via Formal Vinylidene Insertion into Cyclopropanone Equivalents (Vol. 6). Vol. 6. https://doi.org/10.26434/chemrxiv-2021-kv6gx Penn, K. R., Anders, E. J., & Lindsay, V. N. G. (2021). Expedient Synthesis of Bis(imidazolium) Dichloride Salts and Bis(NHC) Complexes from Imidazoles Using DMSO as a Key Polar Additive. ORGANOMETALLICS, 40(23), 3871–3875. https://doi.org/10.1021/acs.organomet.1c00592 Penn, K., Anders, E., & Lindsay, V. (2021, October 28). Expedient Synthesis of Bis(imidazolium) Dichloride Salts and Bis(NHC) Complexes from Imidazoles using DMSO as a Key Polar Additive. https://doi.org/10.33774/chemrxiv-2021-4h434 Penn, K., Anders, E., & Lindsay, V. (2021, October 28). Expedient Synthesis of Bis(imidazolium) Dichloride Salts and Bis(NHC) Complexes from Imidazoles using DMSO as a Key Polar Additive (Vol. 10). Vol. 10. https://doi.org/10.26434/chemrxiv-2021-4h434 Poteat, C. M., & Lindsay, V. N. G. (2021, August 20). Stereospecific Synthesis of Enantioenriched Alkylidenecyclobutanones via Formal Vinylidene Insertion into Cyclopropanone Equivalents. https://doi.org/10.1021/acs.orglett.1c02303 Jang, Y., Machin-Rivera, R., & Lindsay, V. N. G. (2021, May 27). Synthesis and Applications of Cyclopropanones and Their Equivalents as Three-Carbon Building Blocks in Organic Synthesis. SYNTHESIS-STUTTGART, Vol. 5. https://doi.org/10.1055/a-1519-1670 Poteat, C. M., Jang, Y., Jung, M., Johnson, J. D., Williams, R. G., & Lindsay, V. N. G. (2020). Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Formation of Chiral β-Lactams. Angewandte Chemie International Edition, 59(42), 18655–18661. https://doi.org/10.1002/anie.202006786 Poteat, C. M., Jang, Y., Jung, M., Johnson, J. D., Williams, R. G., & Lindsay, V. N. G. (2020). Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Formation of Chiral β‐Lactams. Angewandte Chemie, 132(42), 18814–18820. https://doi.org/10.1002/ange.202006786 Rivera, R. M., Jang, Y., Poteat, C. M., & Lindsay, V. N. G. (2020). General Synthesis of Cyclopropanols via Organometallic Addition to 1-Sulfonylcyclopropanols as Cyclopropanone Precursors. Organic Letters, 22(16), 6510–6515. https://doi.org/10.1021/acs.orglett.0c02303 Rivera, R. M., Jang, Y., Poteat, C. M., & Lindsay, V. (2020, July 13). General Synthesis of Cyclopropanols via Organometallic Addition to 1-Sulfonylcyclopropanols as Cyclopropanone Precursors. https://doi.org/10.26434/chemrxiv.12644153 Rivera, R. M., Jang, Y., Poteat, C. M., & Lindsay, V. (2020, July 13). General Synthesis of Cyclopropanols via Organometallic Addition to 1-Sulfonylcyclopropanols as Cyclopropanone Precursors (Vol. 7). Vol. 7. https://doi.org/10.26434/chemrxiv.12644153.v1 Jang, Y., & Lindsay, V. (2020, September 29). Synthesis of Cyclopentenones with Reverse Pauson-Khand Regiocontrol via Ni-Catalyzed C–C Activation of Cyclopropanone (Vol. 9). Vol. 9. https://doi.org/10.26434/chemrxiv.13012895 Jang, Y., & Lindsay, V. (2020, September 29). Synthesis of Cyclopentenones with Reverse Pauson-Khand Regiocontrol via Ni-Catalyzed C–C Activation of Cyclopropanone (Vol. 9). Vol. 9. https://doi.org/10.26434/chemrxiv.13012895.v1 Jang, Y., & Lindsay, V. N. G. (2020). Synthesis of Cyclopentenones with Reverse Pauson–Khand Regiocontrol via Ni-Catalyzed C–C Activation of Cyclopropanone. Organic Letters, 22(22), 8872–8876. https://doi.org/10.1021/acs.orglett.0c03246 Zhu, J., & Lindsay, V. N. G. (2019). Benzimidazolyl Palladium Complexes as Highly Active and General Bifunctional Catalysts in Sustainable Cross-Coupling Reactions. ACS CATALYSIS, 9(8), 6993–6998. https://doi.org/10.1021/acscatal.9b02420 Poteat, C. M., & Lindsay, V. N. G. (2019). Controlled -mono- and ,-di-halogenation of alkyl sulfones using reagent-solvent halogen bonding. CHEMICAL COMMUNICATIONS, 55(20), 2912–2915. https://doi.org/10.1039/c9cc00550a Poteat, C. M., Jang, Y., Jung, M., Johnson, J. D., Williams, R. G., & Lindsay, V. (2019, December 27). Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Synthesis of β-Lactams. https://doi.org/10.26434/chemrxiv.11457909 Poteat, C. M., Jang, Y., Jung, M., Johnson, J. D., Williams, R. G., & Lindsay, V. (2019, December 27). Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Synthesis of β-Lactams (Vol. 12). Vol. 12. https://doi.org/10.26434/chemrxiv.11457909.v1 Rhodium(II)-Catalyzed Cyclopropanation. (2018). In Rhodium Catalysis in Organic Synthesis: Methods and Reactions. Retrieved from https://www.wiley.com/en-us/Rhodium+Catalysis+in+Organic+Synthesis%3A+Methods+and+Reactions-p-9783527811892 Lindsay, V. N. G. (2017). Dirhodium(II) Tetrakis[R-2-oxaazetidine-4(S)-carboxylate]. In A. B. Charette, D. Crich, P. L. Fuchs, & G. A. Molander (Eds.), Encyclopedia of Reagents for Organic Synthesis. Hoboken, New Jersey: John Wiley & Sons Ltd. Lindsay, V. N. G., Murphy, R. A., & Sarpong, R. (2017). Effect of protic additives in Cu-catalysed asymmetric Diels-Alder cycloadditions of doubly activated dienophiles: towards the synthesis of magellanine-type Lycopodium alkaloids. CHEMICAL COMMUNICATIONS, 53(74), 10291–10294. https://doi.org/10.1039/c7cc06367a Lindsay, V. N. G., Viart, H. M.-F., & Sarpong, R. (2015). Stereodivergent Intramolecular C(sp3)–H Functionalization of Azavinyl Carbenes: Synthesis of Saturated Heterocycles and FusedN-Heterotricycles. Journal of the American Chemical Society, 137(26), 8368–8371. https://doi.org/10.1021/jacs.5b04295 Johnson, R. E., de Rond, T., Lindsay, V. N. G., Keasling, J. D., & Sarpong, R. (2015). Synthesis of Cycloprodigiosin Identifies the Natural Isolate as a Scalemic Mixture. Organic Letters, 17(14), 3474–3477. https://doi.org/10.1021/ACS.ORGLETT.5B01527 1.11 Nucleophilic Addition of Nonstabilized Carbanions to Imines and Imine Derivatives. (2014). In Comprehensive Organic Synthesis II. https://doi.org/10.1016/b978-0-08-097742-3.00114-2 Schultz, E. E., Lindsay, V. N. G., & Sarpong, R. (2014). Expedient Synthesis of Fused Azepine Derivatives Using a Sequential Rhodium(II)-Catalyzed Cyclopropanation/1-Aza-Cope Rearrangement of Dienyltriazoles. Angewandte Chemie International Edition, 53(37), 9904–9908. https://doi.org/10.1002/ANIE.201405356 2-Diazo-1-(4-methoxyphenyl)-2-nitroethanone. (2013). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01542 Methyl α-diazo-4-methoxy-β-oxo-benzenepropanoate. (2013). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01540 Stereoselective Formation of Amines by Nucleophilic Addition to Azomethine Derivatives. (2013). In Stereoselective Formation of Amines. https://doi.org/10.1007/128_2013_492 Lindsay, V. N. G., Fiset, D., Gritsch, P. J., Azzi, S., & Charette, A. B. (2013). Stereoselective Rh2 (S-IBAZ) 4-Catalyzed Cyclopropanation of Alkenes, Alkynes, and Allenes: Asymmetric Synthesis of Diacceptor Cyclopropylphosphonates and Alkylidenecyclopropanes. Journal of the American Chemical Society, 135(4), 1463–1470. https://doi.org/10.1021/ja3099728 α-Diazo-4-methoxy-β-oxobenzenepropanenitrile. (2013). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01541 1-Nitropropane. (2012). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn051.pub2 2-Azido-1,3-dimethylimidazolinium Chloride. (2012). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01465 Moreau, B., Alberico, D., Lindsay, V. N. G., & Charette, A. B. (2012). Catalytic asymmetric synthesis of nitrocyclopropane carboxylates. Tetrahedron, 68(17), 3487–3496. https://doi.org/10.1016/j.tet.2011.05.113 Lindsay, V. N. G., & Charette, A. B. (2012). Design and Synthesis of Chiral Heteroleptic Rhodium(II) Carboxylate Catalysts: Experimental Investigation of Halogen Bond Rigidification Effects in Asymmetric Cyclopropanation. ACS Catalysis, 2(6), 1221–1225. https://doi.org/10.1021/cs300214v Nitromethane. (2012). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn041.pub2 Lindsay, V. N. G., Nicolas, C., & Charette André B. (2011). Asymmetric Rh(II)-Catalyzed Cyclopropanation of Alkenes with Diacceptor Diazo Compounds:p-Methoxyphenyl Ketone as a General Stereoselectivity Controlling Group. Journal of the American Chemical Society, 133(23), 8972–8981. https://doi.org/10.1021/ja201237j Cyclopropanation Reactions. (2011). In Stereoselective Synthesis: Stereoselective Reactions of Carbon-Carbon Double Bonds. Dirhodium(II) Tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]. (2011). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01265 Marcoux, D., Lindsay, V. N. G., & Charette, A. B. (2010). Use of achiral additives to increase the stereoselectivity in Rh(ii)-catalyzed cyclopropanations. Chemical Communications, 46(6), 910. https://doi.org/10.1039/b920587j Lindsay, V. N. G., Lin, W., & Charette André B. (2009). Experimental Evidence for the All-Up Reactive Conformation of Chiral Rhodium(II) Carboxylate Catalysts: Enantioselective Synthesis ofcis-Cyclopropane α-Amino Acids. Journal of the American Chemical Society, 131(45), 16383–16385. https://doi.org/10.1021/ja9044955 Charette, A. B., Côté, A., Desrosiers, J.-N., Bonnaventure, I., Lindsay, V. N. G., Lauzon, C., … Boezio, A. A. (2008). New methods in asymmetric catalysis based on new hemi-labile bidentate ligands. Pure and Applied Chemistry, 80(5), 881–890. https://doi.org/10.1351/pac200880050881 Côté,, A., Lindsay, V. N. G., & Charette, A. B. (2007). Application of the Chiral Bis(phosphine) Monoxide Ligand to Catalytic Enantioselective Addition of Dialkylzinc Reagents to β-Nitroalkenes. Organic Letters, 9(1), 85–87. https://doi.org/10.1021/ol062792t Dirhodium(II) Tetrakis[R 2-oxaazetidine-4(S)-carboxylate]. (2005). In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn00607