@article{reading_hiramatsu_schilling_molloy_glassbrook_mizuta_luo_baltzegar_williams_todo_et al._2014, title={Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes}, volume={55}, ISSN={["1539-7262"]}, DOI={10.1194/jlr.m050286}, abstractNote={Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.}, number={11}, journal={JOURNAL OF LIPID RESEARCH}, author={Reading, Benjamin J. and Hiramatsu, Naoshi and Schilling, Justin and Molloy, Katelyn T. and Glassbrook, Norm and Mizuta, Hiroko and Luo, Wenshu and Baltzegar, David A. and Williams, Valerie N. and Todo, Takashi and et al.}, year={2014}, month={Nov}, pages={2287–2295} } @article{williams_reading_hiramatsu_amano_glassbrook_hara_sullivan_2014, title={Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation}, volume={40}, ISSN={["1573-5168"]}, DOI={10.1007/s10695-013-9852-0}, abstractNote={The multiple vitellogenin (Vtg) system of striped bass, a perciform species spawning nearly neutrally buoyant eggs in freshwater, was investigated. Vitellogenin cDNA cloning, Western blotting of yolk proteins (YPs) using Vtg and YP type-specific antisera, and tandem mass spectrometry (MS/MS) of the YPs revealed the complex mechanisms of yolk formation and maturation in this species. It was discovered that striped bass possesses a tripartite Vtg system (VtgAa, VtgAb, and VtgC) in which all three forms of Vtg make a substantial contribution to the yolk. The production of Vtg-derived YPs is generally similar to that described for other perciforms. However, novel amino-terminal labeling of oocyte YPs prior to MS/MS identified multiple alternative sites for cleavage of these proteins from their parent Vtg, revealing a YP mixture far more complex than reported previously. This approach also revealed that the major YP product of each form of striped bass Vtg, lipovitellin heavy chain (LvH), undergoes limited degradation to smaller polypeptides during oocyte maturation, unlike the case in marine fishes spawning buoyant eggs in which LvHAa undergoes extensive proteolysis to osmotically active free amino acids. These differences likely reflect the lesser need for hydration of pelagic eggs spawned in freshwater. The detailed characterization of Vtgs and their proteolytic fate(s) during oocyte growth and maturation establishes striped bass as a freshwater model for investigating teleost multiple Vtg systems.}, number={2}, journal={FISH PHYSIOLOGY AND BIOCHEMISTRY}, author={Williams, V. N. and Reading, B. J. and Hiramatsu, N. and Amano, H. and Glassbrook, N. and Hara, A. and Sullivan, C. V.}, year={2014}, month={Apr}, pages={395–415} } @article{williams_reading_amano_hiramatsu_schilling_salger_williams_gross_sullivan_2014, title={Proportional Accumulation of Yolk Proteins Derived From Multiple Vitellogenins is Precisely Regulated During Vitellogenesis in Striped Bass (Morone saxatilis)}, volume={321}, ISSN={["2471-5646"]}, url={http://europepmc.org/abstract/med/24648375}, DOI={10.1002/jez.1859}, abstractNote={ABSTRACT}, number={6}, journal={JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY}, author={Williams, Valerie N. and Reading, Benjamin J. and Amano, Haruna and Hiramatsu, Naoshi and Schilling, Justin and Salger, Scott A. and Williams, Taufika Islam and Gross, Kevin and Sullivan, Craig V.}, year={2014}, month={Jul}, pages={301–315} } @article{reading_williams_chapman_williams_sullivan_2013, title={Dynamics of the Striped Bass (Morone saxatilis) Ovary Proteome Reveal a Complex Network of the Translasome}, volume={12}, ISSN={1535-3893 1535-3907}, url={http://dx.doi.org/10.1021/PR3010293}, DOI={10.1021/pr3010293}, abstractNote={We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome. Co-variation within more than one expression module of components from these two multi-protein complexes suggests that they are not only co-regulated, but that co-regulation occurs through more than one sub-network. These components also co-vary with subunits of the TCP-1 chaperonin system and enzymes of intermediary metabolic pathways, suggesting that protein folding and cellular bioenergetic state play important roles in protein synthesis and degradation. We provide further evidence to suggest that protein synthesis and degradation are intimately linked, and our results support function of a proteasome-ribosome supercomplex known as the translasome.}, number={4}, journal={Journal of Proteome Research}, publisher={American Chemical Society (ACS)}, author={Reading, Benjamin J. and Williams, Valerie N. and Chapman, Robert W. and Williams, Taufika Islam and Sullivan, Craig V.}, year={2013}, month={Mar}, pages={1691–1699} } @article{clarke_harms_law_flowers_williams_ring_mcginty_hopper_sullivan_2012, title={Clinical and Pathological Effects of the Polyopisthocotylean Monogenean, Gamacallum macroura in White Bass}, volume={24}, ISSN={["0899-7659"]}, DOI={10.1080/08997659.2012.713889}, abstractNote={Abstract}, number={4}, journal={JOURNAL OF AQUATIC ANIMAL HEALTH}, author={Clarke, Elsburgh O., III and Harms, Craig A. and Law, J. McHugh and Flowers, James R. and Williams, Valerie N. and Ring, Brad D. and McGinty, Andrew S. and Hopper, Michael and Sullivan, Craig V.}, year={2012}, month={Dec}, pages={251–257} }