@article{moore_prodromou_rusch_nguyen_chu_pozdin_daniele_menegatti_2025, title={Light-Controlled Peptide Ligands for the Photoaffinity Purification of FLT3 and CD38}, volume={1}, ISSN={["2771-9545"]}, DOI={10.1021/acsaenm.4c00708}, journal={ACS APPLIED ENGINEERING MATERIALS}, author={Moore, Brandyn D. and Prodromou, Raphael and Rusch, Gabrielle P. and Nguyen, Christina and Chu, Wenning and Pozdin, Vladimir and Daniele, Michael A. and Menegatti, Stefano}, year={2025}, month={Jan} } @article{lebarre_chu_altern_kocot_bhandari_barbieri_sly_crapanzano_cramer_phillips_et al._2024, title={Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode}, volume={1720}, ISSN={0021-9673}, url={http://dx.doi.org/10.1016/j.chroma.2024.464772}, DOI={10.1016/j.chroma.2024.464772}, journal={Journal of Chromatography A}, publisher={Elsevier BV}, author={LeBarre, Jacob P. and Chu, Wenning and Altern, Scott H. and Kocot, Andrew J. and Bhandari, Dipendra and Barbieri, Eduardo and Sly, Jae and Crapanzano, Michael and Cramer, Steven M. and Phillips, Michael and et al.}, year={2024}, month={Apr}, pages={464772} } @article{wu_barbieri_kilgore_moore_chu_mollica_daniele_menegatti_2024, title={Peptide ligands for the affinity purification of adenovirus from HEK293 and vero cell lysates}, volume={1736}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2024.465396}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Wu, Yuxuan and Barbieri, Eduardo and Kilgore, Ryan E. and Moore, Brandyn D. and Chu, Wenning and Mollica, Gina N. and Daniele, Michael A. and Menegatti, Stefano}, year={2024}, month={Nov} } @article{kilgore_moore_sripada_chu_shastry_barbieri_hu_tian_petersen_mohammadifar_et al._2024, title={Peptide ligands for the universal purification of exosomes by affinity chromatography}, volume={8}, ISSN={["1097-0290"]}, DOI={10.1002/bit.28821}, abstractNote={Abstract Exosomes are gaining prominence as vectors for drug delivery, vaccination, and regenerative medicine. Owing to their surface biochemistry, which reflects the parent cell membrane, these nanoscale biologics feature low immunogenicity, tunable tissue tropism, and the ability to carry a variety of payloads across biological barriers. The heterogeneity of exosomes' size and composition, however, makes their purification challenging. Traditional techniques, like ultracentrifugation and filtration, afford low product yield and purity, and jeopardizes particle integrity. Affinity chromatography represents an excellent avenue for exosome purification. Yet, current affinity media rely on antibody ligands whose selectivity grants high product purity, but mandates the customization of adsorbents for exosomes with different surface biochemistry while their binding strength imposes elution conditions that may harm product's activity. Addressing these issues, this study introduces the first peptide affinity ligands for the universal purification of exosomes from recombinant feedstocks. The peptides were designed to (1) possess promiscuous biorecognition of exosome markers, without binding process‐related contaminants and (2) elute the product under conditions that safeguard product stability. Selected ligands SNGFKKHI and TAHFKKKH demonstrated the ability to capture of exosomes secreted by 14 cell sources and purified exosomes derived from HEK293, PC3, MM1, U87, and COLO1 cells with yields of up to 80% and up‐to 50‐fold reduction of host cell proteins (HCPs) upon eluting with pH gradient from 7.4 to 10.5, recommended for exosome stability. SNGFKKHI‐Toyopearl resin was finally employed in a two‐step purification process to isolate exosomes from HEK293 cell fluids, affording a yield of 68% and reducing the titer of HCPs to 68 ng/mL. The biomolecular and morphological features of the isolated exosomes were confirmed by analytical chromatography, Western blot analysis, transmission electron microscopy, nanoparticle tracking analysis.}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Kilgore, Ryan E. and Moore, Brandyn D. and Sripada, Sobhana A. and Chu, Wenning and Shastry, Shriarjun and Barbieri, Eduardo and Hu, Shiqi and Tian, Weihua and Petersen, Heidi and Mohammadifar, Mohammad and et al.}, year={2024}, month={Aug} } @article{shastry_barbieri_minzoni_chu_johnson_stoops_pancorbo_gilleskie_ritola_crapanzano_et al._2024, title={Serotype-agnostic affinity purification of adeno-associated virus (AAV) via peptide-functionalized chromatographic resins}, volume={1734}, ISSN={["1873-3778"]}, url={https://doi.org/10.1016/j.chroma.2024.465320}, DOI={10.1016/j.chroma.2024.465320}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Shastry, Shriarjun and Barbieri, Eduardo and Minzoni, Arianna and Chu, Wenning and Johnson, Stephanie and Stoops, Mark and Pancorbo, Jennifer and Gilleskie, Gary and Ritola, Kimberly and Crapanzano, Michael S. and et al.}, year={2024}, month={Oct} } @article{prodromou_moore_chu_deal_san miguel_brown_daniele_pozdin_menegatti_2023, title={Molecular Engineering of Cyclic Azobenzene‐Peptide Hybrid Ligands for the Purification of Human Blood Factor VIII via Photo‐Affinity Chromatography}, volume={33}, ISSN={1616-301X 1616-3028}, url={http://dx.doi.org/10.1002/adfm.202213881}, DOI={10.1002/adfm.202213881}, abstractNote={AbstractThe use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene‐peptide (CAP) ligands for the rapid and discrete photo‐responsive capture and release of blood coagulation factor VIII (FVIII). A predictive method—based on amino acid sequence and molecular architecture of CAPs—is developed to correlate the conformation of cis/trans‐CAP photo‐isomers to FVIII binding and release. Combined in silico ‐ in vitro analysis of FVIII:peptide interactions guide the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G‐cycloAZOB[Lys‐YYKHLYN‐Lys]‐G on translucent chromatographic beads, features high binding capacity (>6 mg of FVIII per mL of resin) and rapid photo‐isomerization kinetics (τ < 30 s) when exposed to 420–450 nm light at the intensity of 0.1 W cm−2. The adsorbent purifies FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life‐saving biotherapeutics.}, number={14}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Prodromou, Raphael and Moore, Brandyn David and Chu, Wenning and Deal, Halston and San Miguel, Adriana and Brown, Ashley Carson and Daniele, Michael Angelo‐Anthony and Pozdin, Vladimir Aleksandrovich and Menegatti, Stefano}, year={2023}, month={Jan} } @article{chu_shastry_barbieri_prodromou_greback-clarke_smith_moore_kilgore_cummings_pancorbo_et al._2023, title={Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates}, volume={7}, ISSN={["1097-0290"]}, DOI={10.1002/bit.28495}, abstractNote={AbstractAdeno‐associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV‐based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands—typically camelid antibodies—that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1‐VP2 and VP2‐VP3 virion proteins with mild binding strength (KD ~ 10−5–10−6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%–80%) on par with commercial adsorbents. The peptide‐based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%–80%), 80‐ to 400‐fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Chu, Wenning and Shastry, Shriarjun and Barbieri, Eduardo and Prodromou, Raphael and Greback-Clarke, Paul and Smith, Will and Moore, Brandyn and Kilgore, Ryan and Cummings, Christopher and Pancorbo, Jennifer and et al.}, year={2023}, month={Jul} } @article{shastry_chu_barbieri_greback-clarke_smith_cummings_minzoni_pancorbo_gilleskie_ritola_et al._2023, title={Rational design and experimental evaluation of peptide ligands for the purification of adeno-associated viruses via affinity chromatography}, volume={9}, ISSN={["1860-7314"]}, DOI={10.1002/biot.202300230}, abstractNote={AbstractAdeno‐associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity‐based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV‐based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti‐AAV antibody A20, (ii) enable product elution under near‐physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20‐mimetic CYIHFSGYTNYNPSLKSC and AAVR‐mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades – namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC‐Toyopearl resin features binding capacity (≈1014 vp mL−1) and product yields (≈60%–80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700‐fold), and high transduction activity (up to 65%).}, journal={BIOTECHNOLOGY JOURNAL}, author={Shastry, Shriarjun and Chu, Wenning and Barbieri, Eduardo and Greback-Clarke, Paul and Smith, William K. and Cummings, Christopher and Minzoni, Arianna and Pancorbo, Jennifer and Gilleskie, Gary and Ritola, Kimberly and et al.}, year={2023}, month={Sep} } @article{kilgore_minzoni_shastry_smith_barbieri_wu_lebarre_chu_o'brien_menegatti_2023, title={The downstream bioprocess toolbox for therapeutic viral vectors}, volume={1709}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2023.464337}, abstractNote={Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Kilgore, Ryan and Minzoni, Arianna and Shastry, Shriarjun and Smith, Will and Barbieri, Eduardo and Wu, Yuxuan and Lebarre, Jacob P. and Chu, Wenning and O'Brien, Juliana and Menegatti, Stefano}, year={2023}, month={Oct} } @article{wang_hosseini_shastry_barbieri_chu_menegatti_daniele_2023, title={Toward the quantification of adeno-associated virus titer by electrochemical impedance spectroscopy}, DOI={10.1109/BioSensors58001.2023.10281105}, abstractNote={Gene therapies have shown great promise for the potential treatment of a broad range of diseases. Adeno-associated viruses (AAVs) are popular gene vectors because of their ability to target specific tissues, and they have demonstrated high transduction efficiencies in multiple neurological targets. While these therapeutics hold great promise, their biomanufacturing has limited potential cost-reduction and more widespread adoption. Herein, we report the preliminary development of an immunosensor for measuring the titer of adeno-associated virus 2 (AAV2), which may be deployed for rapid quantification of product yield during AAV biomanufacturing. We functionalized an interdigitated electrode array with anti-AAV2 antibodies, and electrochemical impedance spectroscopy was employed to investigate the response to AAV2 titer. A Faradaic sensing principle was utilized, in which the charge transfer resistance (Rct) of an electrochemical reporter was monitored after capture of AAV2 on the surface of the sensor. A linear response was measured over titers 1012 - 1013 capsids/mL.}, journal={2023 IEEE BIOSENSORS CONFERENCE, BIOSENSORS}, author={Wang, Junhyeong and Hosseini, Mahshid and Shastry, Shriarjun and Barbieri, Eduardo and Chu, Wenning and Menegatti, Stefano and Daniele, Michael A.}, year={2023} } @article{xiao_kilgore_sarma_chu_menegatti_hall_2022, title={

De novo discovery of peptide-based affinity ligands for the fab fragment of human immunoglobulin G

}, volume={1669}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2022.462941}, abstractNote={Antibody fragments and their engineered variants show true potential as next-generation therapeutics as they combine excellent targeting with superior biodistribution and blood clearance. Unlike full antibodies, however, antibody fragments do not yet have a standard platform purification process for large-scale production. Short peptide ligands are viable alternatives to protein ligands in affinity chromatography. In this work, an integrated computational and experimental scheme is described to de novo design 9-mer peptides that bind to Fab fragments. The first cohort of designed sequences was tested experimentally using human polyclonal Fab, and the top performing sequence was selected as a prototype for a subsequent round of ligand refinement in silico. The resulting peptides were conjugated to chromatographic resins and evaluated via equilibrium and dynamic binding studies using human Fab-κ and Fab-λ. The equilibrium studies returned values of binding capacities up to 32 mg of Fab per mL of resin with mild affinity (K D ∼ 10 -5  M) that are conducive to high product capture and recovery. Dynamic studies returned values of product yield up to ∼90%. Preliminary purification studies provided purities of 83-93% and yields of 11-89%. These results lay the groundwork for future development of these ligands towards biomanufacturing translation.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Xiao, Xingqing and Kilgore, Ryan and Sarma, Sudeep and Chu, Wenning and Menegatti, Stefano and Hall, Carol K.}, year={2022}, month={Apr} } @article{kilgore_chu_bhandari_fischler_carbonell_crapanzano_menegatti_2023, title={Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids}, volume={1687}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2022.463701}, abstractNote={Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the C H 1-3 and C L chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Q max ∼ 20 mg of Fab per mL of resin) and dissociation constant (K D  = 2.16·10 -6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC 10% ) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC 10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Kilgore, Ryan and Chu, Wenning and Bhandari, Dipendra and Fischler, David and Carbonell, Ruben G. and Crapanzano, Michael and Menegatti, Stefano}, year={2023}, month={Jan} } @article{chu_prodromou_moore_elhanafi_kilgore_shastry_menegatti_2022, title={Development of peptide ligands for the purification of a-1 antitrypsin from cell culture fluids}, volume={1679}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2022.463363}, abstractNote={α-1 antitrypsin (AAT) deficiency, a major risk factor for chronic obstructive pulmonary disease, is one of the most prevalent and fatal hereditary diseases. The rising demand of AAT poses a defined need for new processes of AAT manufacturing from recombinant sources. Commercial affinity adsorbents for AAT purification present the intrinsic limitations of protein ligands - chiefly, the high cost and the lability towards the proteases in the feedstocks and the cleaning-in-place utilized in biomanufacturing - which limit their application despite their high capacity and selectivity. This work presents the development of small peptide affinity ligands for the purification of AAT from Chinese hamster ovary (CHO) cell culture harvests. An ensemble of ligand candidates identified via library screening were conjugated on Toyopearl resin and evaluated via experimental and in silico AAT-binding studies. Initial ranking based on equilibrium binding capacity indicated WHAKKSKFG- (12.9 mg of AAT per mL of resin), WHAKKSHFG- (16.3 mg/mL), and KWKHSHKWG- (15.8 mg/mL) Toyopearl resins as top performing adsorbents. Notably, the fitting of adsorption data to Langmuir isotherms concurred with molecular docking and dynamics in returning values of dissociation constant (K D ) between 1 - 10 µM. These peptide-based adsorbents were thus selected for AAT purification from CHO fluids, affording values of AAT binding capacity up to 13 gram per liter of resin, and product yield and purity up to 77% and 97%. WHAKKSHFG-Toyopearl resin maintained its purification activity upon 20 consecutive uses, demonstrating its potential for AAT manufacturing from recombinant sources.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Chu, Wenning and Prodromou, Raphael and Moore, Brandyn and Elhanafi, Driss and Kilgore, Ryan and Shastry, Shriarjun and Menegatti, Stefano}, year={2022}, month={Aug} } @article{sripada_chu_williams_teten_mosley_carbonell_lenhoff_cramer_bill_yigzaw_et al._2022, title={Towards continuous mAb purification: Clearance of host cell proteins from CHO cell culture harvests via "flow-through affinity chromatography" using peptide-based adsorbents}, volume={119}, ISSN={["1097-0290"]}, url={https://doi.org/10.1002/bit.28096}, DOI={10.1002/bit.28096}, abstractNote={AbstractThe growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of “persistent” HCPs, including immunogenic and mAb‐degrading proteins, that co‐elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow‐through affinity chromatography. This study describes their integration into LigaGuard™, an affinity adsorbent featuring an equilibrium binding capacity of ~30 mg of HCPs per mL of resin as well as dynamic capacities up to 16 and 22 mg/ml at 1‐ and 2‐min residence times, respectively. When evaluated against cell culture harvests with different mAb and HCP titers and properties, LigaGuard™ afforded high HCP clearance, with logarithmic removal values (LRVs) up to 1.5, and mAb yield above 90%. Proteomic analysis of the effluents confirmed the removal of high‐risk HCPs, including cathepsins, histones, glutathione‐S transferase, and lipoprotein lipases. Finally, combining LigaGuard™ for HCP removal with affinity adsorbents for product capture afforded a global mAb yield of 85%, and HCP and DNA LRVs > 4.}, number={7}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, publisher={Wiley}, author={Sripada, Sobhana Alekhya and Chu, Wenning and Williams, Taufika Islam and Teten, Matthew A. and Mosley, Brian J. and Carbonell, Ruben G. and Lenhoff, Abraham M. and Cramer, Steven M. and Bill, Jerome and Yigzaw, Yinges and et al.}, year={2022}, month={Apr} } @article{chu_sripada_reese_bhandari_adams_sly_crapanzano_menegatti_2021, title={Purification of polyclonal immunoglobulin G from human serum using peptide-based adsorbents}, volume={10}, ISSN={["1547-5905"]}, DOI={10.1002/aic.17482}, abstractNote={AbstractThis study presents the chromatographic purification of immunoglobulin G (IgG) from human plasma using a two‐column process integrating the peptide‐based adsorbents LigaGuard™, which captures non‐Ig plasma proteins in flow‐through mode, and LigaTrap™, which isolates IgG in bind‐and‐elute. Buffer composition and column loading were optimized for both adsorbents. Two process configurations were evaluated. In the first design, plasma was fed to a LigaGuard™ column to capture plasma proteins, the effluent was loaded on the LigaTrap™ column, and the bound IgG was eluted with 63.8% global recovery and 99.7% purity; in comparison, Protein G agarose afforded approximately 67% recovery and 97.2% purity. In the alternative design, the LigaGuard™ column was utilized to polish the LigaTrap™ elution stream, affording 82.3% global recovery and 98.8% purity. Collectively, these results demonstrate the potential of a fully chromatographic process for purifying polyclonal IgG from plasma feedstocks.}, journal={AICHE JOURNAL}, author={Chu, Wenning and Sripada, Sobhana A. and Reese, Hannah R. and Bhandari, Dipendra and Adams, Augustus and Sly, Jae and Crapanzano, Michael and Menegatti, Stefano}, year={2021}, month={Oct} } @article{chu_prodromou_day_schneible_bacon_bowen_kilgore_catella_moore_mabe_et al._2021, title={Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics}, volume={1635}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2020.461632}, abstractNote={Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Chu, Wenning and Prodromou, Raphael and Day, Kevin N. and Schneible, John D. and Bacon, Kaitlyn B. and Bowen, John D. and Kilgore, Ryan E. and Catella, Carly M. and Moore, Brandyn D. and Mabe, Matthew D. and et al.}, year={2021}, month={Jan} } @article{lavoie_chu_lavoie_hetzler_williams_carbonell_menegatti_2021, title={Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents}, volume={257}, ISSN={["1873-3794"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85093930679&partnerID=MN8TOARS}, DOI={10.1016/j.seppur.2020.117890}, abstractNote={This work presents the removal of host cell proteins (HCPs) from a Chinese Hamster Ovary clarified cell culture fluid (CHO CCCF) containing a therapeutic monoclonal antibody (mAb) by weak partitioning chromatography (WPC). The chromatographic adsorbents were produced by functionalizing Toyopearl resin with HCP-binding tetrameric multipolar (4MP) or hexameric hydrophobic/cationic (6HP) peptides. The CCCF was loaded on columns packed with either 4MP-Toyopearl or 6HP-Toyopearl resin only, or a 4MP and 6HP resin mixture at different values of residence time (RT: 0.5, 1, 2, and 5 min). The temporal profiles of concentration of HCPs and mAb in the effluents confirmed the binding mechanism by WPC, where both HCPs and mAb are initially bound by the peptide ligands, but, as more CCCF is fed to the column, the incoming HCPs displace the bound mAbs. In particular, 4MP was shown to capture more selectively high molecular weight HCPs, while 6HP was more effective in binding low molecular weight HCPs. Under optimal loading conditions (~60–80 g of proteins per L of adsorbent; RT of 5 min), the 6HP+4MP-Toyopearl adsorbent provided mAb yield and purity of >80% and up to 90%, respectively. Conversely, the control resin Toyopearl SuperQ-650 M resulted in 70% yield and 75% purity under the same conditions. Proteomic analysis of the effluents demonstrated that 6HP+4MP-Toyopearl adsorbent removes HCPs known for their immunogenicity or IgG co-elution or degradation, demonstrating the potential of these peptide-based resins as HCP scrubbers in mAb purification processes.}, journal={SEPARATION AND PURIFICATION TECHNOLOGY}, author={Lavoie, R. Ashton and Chu, Wenning and Lavoie, Joseph H. and Hetzler, Zachary and Williams, Taufika Islam and Carbonell, Ruben and Menegatti, Stefano}, year={2021}, month={Feb} }