@article{ruan_yang_beckett_martin_walter_hu_liu_zayan_lessin_faherty_et al._2024, title={Metal-facilitated, sustainable nitroarene hydrogenation under ambient conditions}, volume={432}, ISSN={["1090-2694"]}, DOI={10.1016/j.jcat.2024.115428}, abstractNote={Hydrogenation is a critical reaction in the chemical industry, yielding a range of important compounds such as fine chemicals, pharmachemicals and agrochemicals. However, conventional hydrogenation typically requires pressurized hydrogen, high temperatures and involves noble metal catalysts. We proposed a two-step hydrogenation process, utilizing water as the hydrogen source for the industrially important reduction of nitroarenes to anilines. A metal or reduced metal oxide, which can be obtained from solar thermal or electrochemical reduction, acts as the active site for nitrobenzene adsorption, H2O dissociation and in-situ hydrogen generation. Among the 15 metal and reduced metal oxides investigated, Zn and Sn emerged as highly efficient catalysts for the reduction of a broad range of organic nitro compounds under mild conditions, with H2 utilization efficiency 1–2 orders of magnitude above the state-of-the-art. The presented protocol provides extra dimensions for designing and optimizing conventional hydrogenation process with an alternative pathway. The reactive hydrogen atoms generated in-situ effectively overcome the barriers associated with hydrogen gas dissolution and its subsequent dissociation on the catalyst surface, thereby greatly enhancing the overall effectiveness for the hydrogenation reaction. This research potentially establishes a sustainable, generally applicable alternative to conventional hydrogenation methods, simultaneously presenting a viable solution for renewable energy storage.}, journal={JOURNAL OF CATALYSIS}, author={Ruan, Chongyan and Yang, Kunran and Beckett, Caitlin and Martin, William and Walter, Eric D. and Hu, Wenda and Liu, Junchen and Zayan, Noha and Lessin, Benjamin and Faherty, Jacob Ken and et al.}, year={2024}, month={Apr} } @article{iftikhar_martin_gao_yu_wang_wu_li_2022, title={LaNixFe1−xO3 as flexible oxygen or carbon carriers for tunable syngas production and CO2 utilization}, volume={416}, ISSN={0920-5861}, url={http://dx.doi.org/10.1016/j.cattod.2022.07.022}, DOI={10.1016/j.cattod.2022.07.022}, abstractNote={The current study reports LaFe1−xNixO3−δ redox catalysts as flexible oxygen or carbon carriers for CO2 utilization and tunable production of syngas at relatively low temperatures (∼700 °C), in the context of a hybrid redox process. Specifically, perovskite-structured LaFe1−xNixO3−δ with seven different compositions (x = 0.4–1) were prepared and investigated. Cyclic experiments under alternating methane and CO2 flows indicated that all the samples exhibited favorable reactive performance: CH4 and CO2 conversions varied between 85% and 98% and 70–88%, respectively. While H2/CO ratio from Fe-rich redox catalysts was ~2.3:1 in the methane conversion step, Ni-rich catalysts produced a concentrated (~ 93.7 vol%) hydrogen stream via methane cracking. The flexibility of LaFe1−xNixO3−δ to produce syngas (or hydrogen) with tunable compositions was found to be governed by the iron/nickel (Fe/Ni) ratio. Redox catalysts with higher Fe contents act as a lattice oxygen carrier via chemical looping partial oxidation (CLPOx) of methane whereas those with higher Ni contents function as a carbon carrier via chemical looping methane cracking (CLMC) scheme. XRD analysis and temperature-programmed reactions revealed that both types of catalysts involve the formation of La2O3 and Ni0 /Ni-Fe phases under the methane environment. The ability to re-incorporate La2O3 and Ni/Fe into a perovskite structure gives rise to oxygen-carrying capacity whereas stable Ni0 or Ni/Fe phases would catalyze methane cracking without lattice oxygen exchange in the reaction cycles. Temperature programmed oxidation and Raman spectroscopy indicated the presence of graphitic and amorphous carbon species, which were effectively gasified by CO2 to produce concentrated CO. Stability tests over LaFe0.5Ni0.5O3 and LaNiO3 revealed that the redox performance was stable over a span of 50 cycles.}, journal={Catalysis Today}, publisher={Elsevier BV}, author={Iftikhar, Sherafghan and Martin, William and Gao, Yunfei and Yu, Xinbin and Wang, Iwei and Wu, Zili and Li, Fanxing}, year={2022}, month={Jul} } @article{liu_yusuf_jackson_martin_chacko_vogt-lowell_neal_li_2022, title={Redox oxide@molten salt as a generalized catalyst design strategy for oxidative dehydrogenation of ethane via selective hydrogen combustion}, volume={646}, ISSN={["1873-3875"]}, DOI={10.1016/j.apcata.2022.118869}, abstractNote={The current study demonstrates a redox oxide @ molten salt core-shell architecture as a generalized redox catalyst design strategy for chemical looping – oxidative dehydrogenation of ethane. 17 combinations of redox active oxides and molten salts were prepared, evaluated, and characterized. X-ray diffraction indicates that the redox oxides and molten salts are fully compatible, forming separate and stable phases. X-ray photoelectron spectroscopy demonstrates that the molten salts aggregate at the redox oxide surface, forming a core-shell structure to block the non-selective sites responsible for COx formation. Up to ∼74 % single-pass olefin yields were achieved using the proposed redox catalyst design strategy. Statistical analyses of the performance data indicate the potential to achieve up to 86.7 % single-pass yield by simply optimizing the operating conditions using the redox catalysts reported in this study. Meanwhile, the generalizability of the catalyst design strategy offers exciting opportunities to further optimize the composition and performance of the redox catalysts for ethane ODH under a chemical looping scheme with significantly reduced energy consumption and CO2 emissions.}, journal={APPLIED CATALYSIS A-GENERAL}, author={Liu, Junchen and Yusuf, Seif and Jackson, Daniel and Martin, William and Chacko, Dennis and Vogt-Lowell, Kyle and Neal, Luke and Li, Fanxing}, year={2022}, month={Sep} } @article{iftikhar_martin_wang_liu_gao_li_2022, title={Ru-promoted perovskites as effective redox catalysts for CO2 splitting and methane partial oxidation in a cyclic redox scheme}, volume={11}, ISSN={["2040-3372"]}, url={https://doi.org/10.1039/D2NR04437D}, DOI={10.1039/d2nr04437d}, abstractNote={The current study reports AxA′1−xByB′1−yO3−δ perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme.}, journal={NANOSCALE}, author={Iftikhar, Sherafghan and Martin, William and Wang, Xijun and Liu, Junchen and Gao, Yunfei and Li, Fanxing}, year={2022}, month={Nov} }