@article{shen_zhang_fang_salmon_2023, title={Carbonic Anhydrase Enhanced UV-Crosslinked PEG-DA/PEO Extruded Hydrogel Flexible Filaments and Durable Grids for CO2 Capture}, volume={9}, ISSN={["2310-2861"]}, url={https://www.mdpi.com/2310-2861/9/4/341}, DOI={10.3390/gels9040341}, abstractNote={In this study, poly (ethylene glycol) diacrylate/poly (ethylene oxide) (PEG-DA/PEO) interpenetrating polymer network hydrogels (IPNH) were extruded into 1D filaments and 2D grids. The suitability of this system for enzyme immobilization and CO2 capture application was validated. IPNH chemical composition was verified spectroscopically using FTIR. The extruded filament had an average tensile strength of 6.5 MPa and elongation at break of 80%. IPNH filament can be twisted and bent and therefore is suitable for further processing using conventional textile fabrication methods. Initial activity recovery of the entrapped carbonic anhydrase (CA) calculated from esterase activity, showed a decrease with an increase in enzyme dose, while activity retention of high enzyme dose samples was over 87% after 150 days of repeated washing and testing. IPNH 2D grids that were assembled into spiral roll structured packings exhibited increased CO2 capture efficiency with increasing enzyme dose. Long-term CO2 capture performance of the CA immobilized IPNH structured packing was tested in a continuous solvent recirculation experiment for 1032 h, where 52% of the initial CO2 capture performance and 34% of the enzyme contribution were retained. These results demonstrate the feasibility of using rapid UV-crosslinking to form enzyme-immobilized hydrogels by a geometrically-controllable extrusion process that uses analogous linear polymers for both viscosity enhancement and chain entanglement purposes, and achieves high activity retention and performance stability of the immobilized CA. Potential uses for this system extend to 3D printing inks and enzyme immobilization matrices for such diverse applications as biocatalytic reactors and biosensor fabrication.}, number={4}, journal={GELS}, author={Shen, Jialong and Zhang, Sen and Fang, Xiaomeng and Salmon, Sonja}, year={2023}, month={Apr} } @article{hoque_mahmood_ali_sefat_huang_petersen_harrington_fang_gluck_2023, title={Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System}, volume={8}, ISSN={["2313-7673"]}, url={https://doi.org/10.3390/biomimetics8020170}, DOI={10.3390/biomimetics8020170}, abstractNote={Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.}, number={2}, journal={BIOMIMETICS}, author={Hoque, Muh Amdadul and Mahmood, Nasif and Ali, Kiran M. and Sefat, Eelya and Huang, Yihan and Petersen, Emily and Harrington, Shane and Fang, Xiaomeng and Gluck, Jessica M.}, year={2023}, month={Jun} } @article{hoque_petersen_fang_2023, title={Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance}, volume={12}, ISSN={["2076-0825"]}, DOI={10.3390/act12030129}, abstractNote={Thin fiber-shaped pneumatic artificial muscle (PAM) can generate contractile motions upon stimulation, and it is well known for its good compliance, high weight-to-power ratio, resemblance to animal muscle movements, and, most importantly, the capability to be integrated into fabrics and other textile forms for wearable devices. This fiber-shaped device, based on McKibben technology, consists of an elastomeric bladder that is wrapped around by a braided sleeve, which transfers radial expansion into longitudinal contraction due to the change in the sleeve’s braiding angle while being inflated. This paper investigates the effect of material properties on fiber-shaped PAM’s behavior, including the braiding yarn and bladder’s dimensional and mechanical properties. A range of samples with combinations of yarn and bladder parameters were developed and characterized. A robust fabrication process verified through several calibration and control experiments of PAM was applied, which ensured a more accurate characterization of the actuators. The results demonstrate that material properties, such as yarn stiffness, yarn diameter, bladder diameter, and bladder hardness, have significant effects on PAMs’ deformation strains and forces generated. The findings can serve as fundamental guidelines for the future design and development of fiber-shaped pneumatic actuators.}, number={3}, journal={ACTUATORS}, author={Hoque, Muh Amdadul and Petersen, Emily and Fang, Xiaomeng}, year={2023}, month={Mar} } @article{luan_ming_fang_liu_2023, title={Frequency Characteristics of High Strain Rate Compressions of Cf-MWCNTs/SiC Composites}, volume={6}, ISSN={["2571-6131"]}, url={https://doi.org/10.3390/ceramics6040122}, DOI={10.3390/ceramics6040122}, abstractNote={The incorporation of ductile reinforcements into ceramics helps restrain crack deflection, which can enhance ceramics’ toughness and overcome the matrix’s brittleness. In this paper, we produced a ceramic composite reinforced by carbon fibers coated by multi-wall carbon nanotubes (shortened by Cf-MWCNT/SiC composites) for enhanced impact resistance at a high strain rate that commonly occurs in composite materials used in astronautics, marine, and other engineering fields. The fabrication process involves growing multi-wall carbon nanotubes (MWCNTs) on a carbon fiber woven fabric (Cf) to create the fibril/fabric hybrid reinforcement. It is then impregnated by polymer solution (precursor of the ceramics), forming composites after the pyrolysis process, known as the liquid polymer infiltration and pyrolysis (PIP) technique. To assess the impact resistance of the Cf-MWCNT/SiC under high-strain rate compressions, the split Hopkinson pressure bar (SHPB) technique is employed. Since the failure behavior of the Cf-MWCNT/SiC composites in the absence of the ductile phase is not well understood, the study employs the Hilbert–Huang transform (HHT) to analyze the stress–time curves obtained from the SHPB experiments. By applying the HHT, we obtained the frequency–time spectrum and the marginal Hilbert spectrum of the stress signals. These analyses reveal the frequency characteristics of the Cf-MWCNT/SiC composite and provide insights into the relationship between transformed signal frequency and fracture behavior. By understanding the dynamic fracture behavior and frequency response of the Cf-MWCNT/SiC, it becomes possible to enhance its impact resistance and tailor its performance for specific protective requirements. Therefore, the findings of this study can guide the future design and optimization of Cf-MWCNT/SiC structures for various protective applications, such as body armor, civil structures, and protections for vehicles and aircraft.}, number={4}, journal={CERAMICS-SWITZERLAND}, author={Luan, Kun and Ming, Chen and Fang, Xiaomeng and Liu, Jianjun}, year={2023}, month={Dec}, pages={1991–2007} } @article{sanchez_szewczyk_assaad_zimeri_shim_fang_young_2023, title={Use of Meltblown Nonwoven Fabric Filter for Stormwater Runoff Treatment}, volume={15}, ISSN={["2073-4441"]}, DOI={10.3390/w15020242}, abstractNote={Anthropogenic activities (e.g., rural urbanization) play major roles in preventing the achievement of sustainable water quality, where eutrophication—the exacerbation of increase in nutrient concentrations combined with warmer temperatures and lower light availability, leading to the dense growth of plant life depleting the amount of available oxygen and killing aquatic life—remains a major challenge for surface water bodies. Filtration mechanisms, with a wide range of applicability, capture common waterborne pathogens as small as 0.1–20.0 μm (bacteria, cysts, spores) and 0.001–0.100 μm (protein, viruses, endotoxins) through the process of microfiltration and ultrafiltration. This study follows the premise of using a designed water flow-through system, with meltblown nonwoven fabrics to measure its performance to capture water contaminant constituents of surface water contamination and eutrophication: total coliforms, nitrate, and orthophosphate. The achieved fabric filtration mechanism showed capture of total coliforms (59%), nitrate (51%), and orthophosphate (46%). The current study provides an alternative solution to more common and traditional water treatment technologies, such as chlorine and ozone disinfection, which (1) introduces disinfection or treatment byproducts and (2) cannot adapt to the permanent changing conditions and newer environmental challenges.}, number={2}, journal={WATER}, author={Sanchez, Jaime A. Cardenas and Szewczyk, Hunter and Assaad, Judy and Zimeri, Carlos and Shim, Eunkyoung and Fang, Xiaomeng and Young, Kyana R. L.}, year={2023}, month={Jan} } @misc{shen_zhang_fang_salmon_2022, title={Advances in 3D Gel Printing for Enzyme Immobilization}, volume={8}, ISSN={["2310-2861"]}, url={https://doi.org/10.3390/gels8080460}, DOI={10.3390/gels8080460}, abstractNote={Incorporating enzymes with three-dimensional (3D) printing is an exciting new field of convergence research that holds infinite potential for creating highly customizable components with diverse and efficient biocatalytic properties. Enzymes, nature’s nanoscale protein-based catalysts, perform crucial functions in biological systems and play increasingly important roles in modern chemical processing methods, cascade reactions, and sensor technologies. Immobilizing enzymes on solid carriers facilitates their recovery and reuse, improves stability and longevity, broadens applicability, and reduces overall processing and chemical conversion costs. Three-dimensional printing offers extraordinary flexibility for creating high-resolution complex structures that enable completely new reactor designs with versatile sub-micron functional features in macroscale objects. Immobilizing enzymes on or in 3D printed structures makes it possible to precisely control their spatial location for the optimal catalytic reaction. Combining the rapid advances in these two technologies is leading to completely new levels of control and precision in fabricating immobilized enzyme catalysts. The goal of this review is to promote further research by providing a critical discussion of 3D printed enzyme immobilization methods encompassing both post-printing immobilization and immobilization by physical entrapment during 3D printing. Especially, 3D printed gel matrix techniques offer mild single-step entrapment mechanisms that produce ideal environments for enzymes with high retention of catalytic function and unparalleled fabrication control. Examples from the literature, comparisons of the benefits and challenges of different combinations of the two technologies, novel approaches employed to enhance printed hydrogel physical properties, and an outlook on future directions are included to provide inspiration and insights for pursuing work in this promising field.}, number={8}, journal={GELS}, author={Shen, Jialong and Zhang, Sen and Fang, Xiaomeng and Salmon, Sonja}, year={2022}, month={Aug} } @article{gao_deaton_barker_denhartog_fang_2022, title={Effects of Air Gaps on Heat Loss through Firefighter Turnout Composites with Different Moisture Barrier Components}, volume={10}, ISSN={["1875-0052"]}, DOI={10.1007/s12221-022-0420-z}, journal={FIBERS AND POLYMERS}, author={Gao, Huipu and Deaton, Anthoney Shawn and Barker, Roger and DenHartog, Emiel and Fang, Xiaomeng}, year={2022}, month={Oct} } @article{gao_deaton_fang_barker_denhartog_watson_2022, title={Effects of Outer Shell Fabric Color, Smoke Contamination, and Washing on Heat Loss through Turnout Suit Systems}, volume={92}, ISSN={0040-5175 1746-7748}, url={http://dx.doi.org/10.1177/00405175211073353}, DOI={10.1177/00405175211073353}, abstractNote={ Firefighters frequently have to work in direct solar radiant heat. To reduce firefighter heat stress, the influence of turnout garment properties on heat gain from solar radiation must be understood. This research studied the effects of color, texture, washing, and contamination of outer shell fabrics on heat loss through firefighter turnout fabric materials in simulated solar exposures. It showed that solar radiation could be a major factor in heat loss through turnout suits. Solar radiation equivalent to a sunny day completely reversed heat exchange through the turnout fabric systems, converting a heat loss of about 240 W/m2 to a heat gain exceeding 100 W/m2. Solar radiation caused turnout fabric systems to dry out and this decreased the performance of turnout systems that incorporated bi-component moisture barriers. Most significantly, the color of the outer shell had a major influence on lowering turnout heat loss in solar exposures. Composites with a black-dyed outer shell absorbed more solar energy than composites with lighter colored shell materials. Soot and fire-ground contaminants present on turnout outer shell fabrics also reduced heat loss under solar exposure. The findings of this study answered long-standing questions about the importance of turnout fabric color on heat exchange with the environment. The results provide additional motivation for efficient turnout cleaning practices, not only to reduce potentially toxic exposure to smoke contaminants, but to reduce turnout-gear-related heat strain on firefighters. }, number={11-12}, journal={Textile Research Journal}, publisher={SAGE Publications}, author={Gao, Huipu and Deaton, A. Shawn and Fang, Xiaomeng and Barker, Roger L. and DenHartog, Emiel and Watson, Kyle}, year={2022}, month={Jan}, pages={1909–1922} } @article{gao_deaton_barker_fang_watson_2022, title={Effects of the moisture barrier and thermal liner components on the heat strain and thermal protective performance of firefighter turnout systems}, volume={5}, ISSN={["1746-7748"]}, url={https://doi.org/10.1177/00405175221099947}, DOI={10.1177/00405175221099947}, abstractNote={ An ideal firefighter turnout system should be capable of releasing body heat to prevent heat stress, indicated by THL (total heat loss) and Ref (evaporative resistance) indexes, while maintaining high thermal protective performance (TPP). Our study found no correlations between THL and Ref, or between Ref and TPP. The results showed that, when tested in the mild condition as in the standard THL test method, turnout systems with bi-component moisture barriers exhibited an advantage in THL that did not translate to more thermally stressful hot environments. A physiological manikin was used to understand the effect of turnout clothing systems on heat strain in different environmental conditions and the value of utilizing Ref or THL to predict heat strain performance. We found no difference in heat strain performance between composites with one-layer and two-layer spunlace thermal liners in mild or hot conditions. It showed that both THL and Ref had their limitations: THL only predicted thermal burden in mild environments, while Ref was only correlated in hot conditions. Thus, the exclusive reliance on either index could increase the risk of heat stress, and we recommend incorporating the Ref heat strain index, along with THL, as dual metrics for certifying the heat strain performance of turnout suits in the NFPA 1971 standard. }, journal={TEXTILE RESEARCH JOURNAL}, author={Gao, Huipu and Deaton, A. Shawn and Barker, Roger and Fang, Xiaomeng and Watson, Kyle}, year={2022}, month={May} } @article{gao_deaton_barker_fang_watson_2022, title={Relationship between heat loss indexes and physiological indicators of turnout-related heat strain in mild and hot environments}, volume={3}, ISSN={["2376-9130"]}, url={https://doi.org/10.1080/10803548.2022.2058746}, DOI={10.1080/10803548.2022.2058746}, abstractNote={A validated physiological manikin method was used to qualify environmentally dependent correlations between firefighter turnout total heat loss (THL) and intrinsic evaporative resistance (R ef) heat strain indexes and core temperature rise in stressful work conducted in mild (25 °C, 65% relative humidity [RH]) and hot (35 °C, 40% RH; 40 °C, 28% RH) conditions. Five turnout suit constructions representing a wide range of breathability were selected. The observed correlations between measured material heat loss and core temperature showed that the THL heat strain index accurately forecast thermal burden in mild environments (<25 °C); while the R ef index provided accurate prediction in hot environments (>35 °C). They showed that the THL index did not predict heat strain in hot work environments. The findings of this study support incorporating both the R ef and THL heat strain indexes as dual metrics for characterizing the heat strain performance of turnout clothing fabrics.}, journal={INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS}, publisher={Informa UK Limited}, author={Gao, Huipu and Deaton, A. Shawn and Barker, Roger and Fang, Xiaomeng and Watson, Kyle}, year={2022}, month={Apr} } @article{gao_deaton_fang_watson_denhartog_barker_2021, title={Effects of environmental temperature and humidity on evaporative heat loss through firefighter suit materials made with semi-permeable and microporous moisture barriers}, volume={92}, ISSN={0040-5175 1746-7748}, url={http://dx.doi.org/10.1177/00405175211026537}, DOI={10.1177/00405175211026537}, abstractNote={ The goal of this research was to understand how firefighter protective suits perform in different operational environments. This study used a sweating guarded hotplate to examine the effect of environmental temperature (20–45°C) and relative humidity (25–85% RH) on evaporative heat loss through firefighter turnout materials. Four firefighter turnout composites containing three different bi-component (semi-permeable) and one microporous moisture barriers were selected. The results showed that the evaporative resistance of microporous moisture barrier systems was independent of environmental testing conditions. However, absorbed moisture strongly affected evaporative heat loss through semi-permeable moisture barriers coated with a layer of nonporous hydrophilic polymer. Moisture absorption in mild environment (20–25°C) tests, or when testing at high humidity (>85% RH), significantly increased water vapor transmission in semi-permeable turnout systems. It was also found that environmental conditions used in the total heat loss (THL) test (25°C and 65% RH) produced moisture condensation in bi-component barrier systems, making them appear more breathable than could be expected when worn in hotter environments. Regression models successfully qualified the relationships between moisture uptake levels in semi-permeable barrier systems and evaporative resistance and THL. These findings reveal the limitations in relying on THL, the heat strain index currently called for by the NFPA 1971 Standard for Structural Firefighter personal protective equipment, and supports the need to measure turnout evaporative resistance at 35°C (Ret), in addition to THL at 25°C. }, number={1-2}, journal={Textile Research Journal}, publisher={SAGE Publications}, author={Gao, Huipu and Deaton, Anthoney Shawn and Fang, Xiaomeng and Watson, Kyle and DenHartog, Emiel A and Barker, Roger}, year={2021}, month={Jul}, pages={219–231} } @article{barker_fang_deaton_denhartog_gao_tutterow_schmid_2021, title={Identifying factors that contribute to structural firefighter heat strain in North America}, volume={28}, ISSN={1080-3548 2376-9130}, url={http://dx.doi.org/10.1080/10803548.2021.1987024}, DOI={10.1080/10803548.2021.1987024}, abstractNote={This article describes results from a survey of firefighters designed to identify conditions that contribute to heat strain in structural firefighting. Based on responses from about 3000 firefighters across the USA and Canada, the article provides invaluable information about how firefighters associate environmental conditions, work tasks and other factors with heat strain. One-half of firefighters surveyed have experienced heat stress during their service. They can wear fully deployed turnout gear for 2 h or more at the fire scene, reinforcing the importance of turnout suit breathability as a factor in heat strain. Survey results are useful in weighing the comparative value of total heat loss (THL) and evaporative heat resistance (Ref) for predicting turnout-related heat strain. Survey findings support the inclusion of a performance criterion in the National Fire Protection Association 1971 standard for firefighter personal protective equipment based on limiting Ref of turnout materials along with current THL requirement.}, number={4}, journal={International Journal of Occupational Safety and Ergonomics}, publisher={Informa UK Limited}, author={Barker, Roger and Fang, Xiaomeng and Deaton, Shawn and DenHartog, Emiel and Gao, Huipu and Tutterow, Robert and Schmid, Marni}, year={2021}, month={Nov}, pages={2183–2192} } @inbook{denhartog_fang_deaton_2020, title={Effects of Total Heat Loss versus Evaporative Resistance of Firefighter Garments in a Physiological Heat Strain Trial}, url={https://doi.org/10.1520/STP162420190075}, DOI={10.1520/STP162420190075}, author={DenHartog, Emiel A. and Fang, Xiaomeng and Deaton, A. Shawn}, year={2020}, month={Sep} } @inbook{fang_chatterjee_kapoor_ghosh_2020, place={Weinheim, Germany}, title={Fiber-Based Sensors and Actuators}, ISBN={9783527342204}, url={http://dx.doi.org/10.1002/9783527342587.ch25}, DOI={10.1002/9783527342587.ch25}, abstractNote={Wearable electronics have evolved from personal pocket-size devices to smart glasses and watches, athletic apparel with biomonitoring capabilities, and high fashion garments with responsive designs. Integration of electronic devices that are traditionally rigid into textile form factors that can be worn for on-body applications also dubbed as electronic textiles (e-textiles) are well underway. Textiles used as clothing provide an excellent medium for the deployment of flexible electronics due their intimate contact with the human body. While the new area of innovative research and commercialization of e-textile products offer many opportunities the challenges are to preserve the quintessential qualities of textiles such as flexibility, porosity, bulk, and texture essential for clothing and others. In this chapter, we review the integration of sensors and actuators into fibrous form factors for various wearable electronic applications. Since sensors and actuators are closely linked in terms of providing a measurable response to an external stimulus, we envisage a closed loop personal comfort system where both are integrated to create an autonomous system of control without the need for external intervention. Hence, research in this field is particularly of interest both from a materials perspective as well as from a structure and performance perspective.}, booktitle={Handbook of Fibrous Materials}, publisher={Wiley-VCH}, author={Fang, X. and Chatterjee, K. and Kapoor, A. and Ghosh, T.K.}, editor={Hu, Jinlian and Kumar, Bipin and Lu, JingEditors}, year={2020}, pages={681–720} } @article{luan_liu_sun_zhang_hu_fang_ming_song_2019, title={High strain rate compressive response of the C-f/SiC composite}, volume={45}, ISSN={["1873-3956"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85059100831&partnerID=MN8TOARS}, DOI={10.1016/j.ceramint.2018.12.174}, abstractNote={Carbon fiber reinforced ceramic owns the properties of lightweight, high fracture toughness, excellent shock resistance, and thus overcomes ceramic's brittleness. The researches on the advanced structure of astronautics, marine have exclusively evaluated the quasi-static mechanical response of carbon fiber reinforced ceramics, while few investigations are available in the open literature regarding elastodynamics. This paper reports the dynamic compressive responses of a carbon fiber reinforced silicon carbide (Cf/SiC) composite (CFCMC) tested by the material test system 801 machine (MTS) and the split Hopkinson pressure bar (SHPB). These tests were to determine the rate dependent compression response and high strain rate failure mechanism of the Cf/SiC composite in in-plane and out-plane directions. The in-plane compressive strain rates are from 0.001 to 2200 s−1, and that of the out-plane direction are from 0.001 to 2400 s−1. The compressive stress-strain curves show the Cf/SiC composite has a property of strain rate sensitivity in both directions while under high strain rate loadings. Its compressive stiffness, compressive stress, and corresponding strain are also strain rate sensitive. The compressive damage morphologies after high strain rate impacting show different failure modes for each loading direction. This study provides knowledge about elastodynamics of fiber-reinforced ceramics and extends their design criterion with a reliable evaluation while applying in the scenario of loading high strain rate.}, number={6}, journal={CERAMICS INTERNATIONAL}, author={Luan, Kun and Liu, Jianjun and Sun, Baozhong and Zhang, Wei and Hu, Jianbao and Fang, Xiaomeng and Ming, Chen and Song, Erhong}, year={2019}, month={Apr}, pages={6812–6818} } @article{yildiz_dirican_fang_fu_jia_stano_zhang_bradford_2019, title={Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes}, volume={166}, ISSN={["1945-7111"]}, url={https://publons.com/publon/26924627/}, DOI={10.1149/2.0821902jes}, abstractNote={Silicon is one of the most promising anode materials for lithium-ion batteries because of its highest known theoretical charge capacity (4,200 mAh g−1). However, it has found limited application in commercial batteries because of the significant volume change (up to 400%) of silicon during cycling, which results in pulverization and capacity fading. Here, we present a new method to develop a silicon - carbon nanotube (CNT) hybrid anode architecture using CNT-polymer nanofiber hybridization method. The anode material is produced by electrospinning PMMA-Si nanofibers onto aligned CNT sheets, which are drawn on a grounded, rotating take-up roller, and then subsequently decomposing the PMMA electrospun fibers at elevated temperature to create a uniform distribution of Si particles within the CNT sheets. The whole structure is then coated with pyrolytic carbon via chemical vapor deposition (CVD). The architecture provides sufficient space to accommodate the volume expansion of the Si nanoparticles. The CVD pyrolytic carbon coating helps to anchor the Si nanoparticles within CNT sheets and stabilize solid-electrolyte-interface (SEI) formation. The novel freestanding, binder free CNT-Si-C sheet hybrid exhibited improved performance in terms of excellent cycling capacity (1470 mAh g−1), high coulombic efficiency (98%), and good capacity retention of 88% after 150 cycles.}, number={4}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Yildiz, Ozkan and Dirican, Mahmut and Fang, Xiaomeng and Fu, Kun and Jia, Hao and Stano, Kelly and Zhang, Xiangwu and Bradford, Philip D.}, year={2019}, month={Feb}, pages={A473–A479} } @phdthesis{fang_2017, place={Raleigh, NC}, title={Anisotropic D-EAP Electrodes and their Application in Spring Roll Actuators}, school={North Carolina State University}, author={Fang, Xiaomeng}, year={2017} } @article{fang_li_yildiz_shao_bradford_ghosh_2017, title={Enhanced anisotropic response of dielectric elastomer actuators with microcombed and etched carbon nanotube sheet electrodes}, volume={120}, ISSN={["1873-3891"]}, DOI={10.1016/j.carbon.2017.05.067}, abstractNote={Dielectric elastomers (DE), also known as dielectric electroactive polymers offer tremendous potential in a wide-ranging applications including microrobotics and wearable responsive systems. The real-world application of DEs, however, has been limited by a number of factors, including facile means of producing directional stress/strain. As a critical component of the DE actuator, the electrodes should have high electrical conductance under finite in-plane deformation, good electromechanical stability, and ease of shaping based on the design requirements. In this work we investigate highly aligned carbon nanotube (CNT) sheets as electrodes in DE actuators to yield anisotropic electromechanical response. The morphology of CNT sheets were altered by microcombing and selective laser etching to enhance mechanical anisotropy. The enhancement of CNT sheets alignment results in almost pure unidirectional strain of 33% at a relatively moderate electric field. The results demonstrate that the deformation anisotropy of DE actuators can be significantly improved by directional laser etching of the electrodes rather than microcombing alone.}, journal={CARBON}, author={Fang, Xiaomeng and Li, Ang and Yildiz, Ozkan and Shao, Huiqi and Bradford, Philip D. and Ghosh, Tushar K.}, year={2017}, month={Aug}, pages={366–373} } @article{caydamli_yildirim_shen_fang_pasquinelli_spontak_tonelli_2017, title={Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends}, volume={13}, ISSN={["1744-6848"]}, url={https://doi.org/10.1039/C7SM01788J}, DOI={10.1039/c7sm01788j}, abstractNote={Nanocomposites prepared by incorporating polyhedral oligomeric silsesquioxane (POSS) into polymer matrices afford versatile hybrid materials but are exquisitely sensitive to even POSS monofunctionalization.}, number={46}, journal={SOFT MATTER}, publisher={Royal Society of Chemistry (RSC)}, author={Caydamli, Yavuz and Yildirim, Erol and Shen, Jialong and Fang, Xiaomeng and Pasquinelli, Melissa A. and Spontak, Richard J. and Tonelli, Alan E.}, year={2017}, month={Dec}, pages={8672–8677} } @article{cakmak_fang_yildiz_bradford_ghosh_2015, title={Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers}, volume={89}, ISSN={["1873-3891"]}, DOI={10.1016/j.carbon.2015.03.011}, abstractNote={The performance of dielectric electroactive polymer (D-EAP) based actuators depends critically on the electrode characteristics. Among the most challenging issues in the application of D-EAPs is the device-level complexity in producing sufficient directional actuation at acceptably low electric fields. In this work, a simple carbon nanotube (CNT) based electrode for D-EAP actuators is demonstrated that vastly improves directional strain response originating from the mechanical anisotropy of the electrode material. In this novel approach, highly aligned carbon nanotube (CNT) sheet electrodes are applied on acrylate adhesive films show high directed linear actuation strain of greater than 40% at a relatively low electric field (100 V μm−1). The fiber-oriented CNT sheet applied around the D-EAP film, exhibits strong interaction between CNT fibers in the electrode and the D-EAP film to produce a robust conductive-nanolayer at the interface, on actuation cycling. The design paradigm provides a great potential for the fabrication of soft linear actuators.}, journal={CARBON}, author={Cakmak, Enes and Fang, Xiaomeng and Yildiz, Ozkan and Bradford, Philip D. and Ghosh, Tushar K.}, year={2015}, month={Aug}, pages={113–120} } @article{caydamli_shen_fang_spontak_tonelli_2015, place={NW, Washington, DC 20036 USA}, title={Comparison of the behavior of PEG-POSS stars with unlinked POSS in PEO films and fibers}, volume={250}, journal={Abstracts of Papers of The American Chemical Society}, author={Caydamli, Yavuz and Shen, Jialong and Fang, Xiaomeng and Spontak, Richard and Tonelli, Alan}, year={2015} } @article{yang_caydamli_fang_tonelli_2015, title={Crystallization Behaviors of Modified Poly(ethylene terephthalate) and Their Self-nucleation Ability}, volume={300}, ISSN={["1439-2054"]}, DOI={10.1002/mame.201400348}, abstractNote={A poly(ethylene terephthalate) (PET)/allylisobutyl polyhedral oligomeric silsesquioxanes (a‐POSS) nanocomposite is prepared by a solvent‐casting method and as‐received PET (asr‐PET) is modified by a precipitation method to yield precipitated PET (p‐PET). Their crystallization behaviors have been studied, and both modification methods improved the crystallization temperatures and crystallinities of PET. They were subsequently used to further nucleate asr‐PET at 1 and 5 wt% levels to form self‐nucleated PETs, with higher crystallization temperatures and higher crystallinities. Thermogravimetric analyses (TGA) show their thermal stabilities have been improved, and both self‐nucleated PETs have superior mechanical properties.}, number={4}, journal={MACROMOLECULAR MATERIALS AND ENGINEERING}, author={Yang, Hui and Caydamli, Yavuz and Fang, Xiaomeng and Tonelli, Alan E.}, year={2015}, month={Apr}, pages={403–413} } @article{dirican_yildiz_lu_fang_jiang_kizil_zhang_2015, title={Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries}, volume={169}, ISSN={["1873-3859"]}, url={https://doi.org/10.1016/j.electacta.2015.04.035}, DOI={10.1016/j.electacta.2015.04.035}, abstractNote={High-capacity flexible electrode materials for high-energy lithium–ion batteries become critically important with technological improvements on portable and bendable electronic equipment such as rollup displays, implantable medical devices, active radio-frequency identification tags, and wearable devices. Although different types of bendable electrode materials have been introduced, it is very important to fabricate highly-flexible electrode materials with reasonable fabrication technique and high electrochemical performance similar to those of conventional high-capacity electrode materials. Herein, we introduced high-capacity, flexible Si/SiO2/C nanofiber composite anode materials by simple electrospinning and subsequent heat treatment processes. To further improve the long-term cycling performance, additional nanoscale carbon coating of flexible Si/SiO2/C nanofibers was performed by CVD technique. Electrochemical performance results showed that CVD carbon-coated flexible Si/SiO2/C nanofiber composites exhibited high capacity retention of 86.7% and high coulombic efficiency of 96.7% at the 50th cycle. It is, therefore, demonstrated that CVD carbon-coated flexible Si/SiO2/C nanofiber composites are promising anode material candidate for next-generation flexible and high-energy lithium–ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Dirican, Mahmut and Yildiz, Ozkan and Lu, Yao and Fang, Xiaomeng and Jiang, Han and Kizil, Huseyin and Zhang, Xiangwu}, year={2015}, month={Jul}, pages={52–60} } @article{zhang_fang_sun_sun_qiu_2014, title={Comparison of the Mechanical Properties between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites}, volume={22}, ISSN={0967-3911 1478-2391}, url={http://dx.doi.org/10.1177/096739111402200216}, DOI={10.1177/096739111402200216}, abstractNote={ Polypropylene (PP) composites reinforced with ramie 2D plain fabric is widely developed recently. In this paper, PP composites reinforced by using 3D orthogonal woven ramie fabric under hot-press molding process were made. The tensile and flexural strength of reinforced composites were tested and discussed. The results showed that the normalized tensile strength and the normalized tensile Young's modulus of 3D composite were significantly improved compared with that of 2D composites. The normalized flexural strength and the normalized flexural Young's modulus of 3D composite were also greatly improved. Overall results indicating that compared with 2D composite the 3D orthogonal woven ramie fabric could significantly improve the mechanical property of PP composites. }, number={2}, journal={Polymers and Polymer Composites}, publisher={SAGE Publications}, author={Zhang, Qian and Fang, Xiaomeng and Sun, Xiaojuan and Sun, Baozhong and Qiu, Yiping}, year={2014}, month={Feb}, pages={187–192} } @article{liu_yu_cakmak_fang_2014, title={Lif Demetlerindeki Yoğunluk Farklarının Hava ve Ses İzolayonu Üzerine Etkisinin İncelenmesi}, volume={8}, number={2}, journal={Electronic Journal of Vehicle Technologies / Tasit Teknolojileri Elektronik Dergisi.}, author={Liu, Q. and Yu, W. and Cakmak, E. and Fang, X.}, year={2014}, pages={19–29} } @inproceedings{fang_zhang_lu_qui_2011, title={3D orthogonal woven ramie fiber reinforced polypropylene composites}, booktitle={2011 International Symposium on Sustainable Composites (ISSC) 4th China-Japan Joint Seminar on Green Composites}, author={Fang, X. and Zhang, Q. and Lu, C. and Qui, Y.}, year={2011}, month={Oct} } @article{sun_luan_gu_fang_zhang_2011, title={Light-Weighting Design of Eco-Power Automobile Chassis Made from Green Composite and its Topology Optimization in FEA}, volume={341-342}, ISSN={1662-8985}, url={http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.183}, DOI={10.4028/www.scientific.net/amr.341-342.183}, abstractNote={Green composite made from ramie fabric and polypropylene (PP) is a kind of recyclable and environmental friendly material. Ramie fiber tows have relatively good mechanical properties comparing with other bast fibers, and hence the fabric woven by ramie yarn shows excellent in-plane mechanical behaviors. PP can be fully recovered and recycling used for its thermoplastic character. Ramie fabrics reinforced by PP have better shape formability and maintenance. In this paper, we proposed a plain weave in sample dobby loom, and reinforced four laid-layers together by PP particle through hot pressing. The mechanical behaviors of the ramie-PP composite were tested by MTS-810 Material Testing System in weft and warp directions separately which were essential parameters to the following topology optimization in finite element analysis (FEA) software. A body of eco-power automobile consisting of shell and chassis was original designed in Pro/E® Wildfire 5.0. For the chassis is the main bearing structure, it is an important part in the eco-power automobile body and was chosen to be topology optimized. Fiber volume fraction and structure optimization of the chassis model are evaluated and simulated to guide the material formation of manufacture progress.}, journal={Advanced Materials Research}, publisher={Trans Tech Publications}, author={Sun, Bao Zhong and Luan, Kun and Gu, Bo Hong and Fang, Xiao Meng and Zhang, Jia Jin}, year={2011}, month={Sep}, pages={183–188} } @inproceedings{fang_zhang_lu_qiu_2010, title={Comparison of the Mechanical Properties Between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites}, booktitle={The 6th International Symposium for Materials & Kansei in Textile Fashion}, author={Fang, X. and Zhang, Q. and Lu, C. and Qiu, Y.}, year={2010}, month={Aug} }