Xu Wu
Moloko, L. E., Bokov, P. M., Wu, X., & Ivanov, K. N. (2023). Prediction and uncertainty quantification of SAFARI-1 axial neutron flux profiles with neural networks. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2023.109813
Xie, Z., Jiang, W., Wang, C., & Wu, X. (2022). Bayesian inverse uncertainty quantification of a MOOSE-based melt pool model for additive manufacturing using experimental data. ANNALS OF NUCLEAR ENERGY, 165. https://doi.org/10.1016/j.anucene.2021.108782
Yaseen, M., & Wu, X. (2022, November 4). Quantification of Deep Neural Network Prediction Uncertainties for VVUQ of Machine Learning Models. NUCLEAR SCIENCE AND ENGINEERING, Vol. 11. https://doi.org/10.1080/00295639.2022.2123203
Wu, X., Xie, Z., Alsafadi, F., & Kozlowski, T. (2021). A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes. NUCLEAR ENGINEERING AND DESIGN, 384. https://doi.org/10.1016/j.nucengdes.2021.111460
Che, Y., Wu, X., Pastore, G., Li, W., & Shirvan, K. (2021). Application of Kriging and Variational Bayesian Monte Carlo method for improved prediction of doped UO2 fission gas release. ANNALS OF NUCLEAR ENERGY, 153. https://doi.org/10.1016/j.anucene.2020.108046
Lu, C., Wu, Z., & Wu, X. (2021). Enhancing the One-Dimensional SFR Thermal Stratification Model via Advanced Inverse Uncertainty Quantification Methods. Nuclear Technology, 10, 1–19. https://doi.org/10.1080/00295450.2020.1805259
Xie, Z., Alsafadi, F., & Wu, X. (2021). Towards improving the predictive capability of computer simulations by integrating inverse Uncertainty Quantification and quantitative validation with Bayesian hypothesis testing. NUCLEAR ENGINEERING AND DESIGN, 383. https://doi.org/10.1016/j.nucengdes.2021.111423
Jin, Y., Wu, X., & Shirvan, K. (2020). System code evaluation of near-term accident tolerant claddings during pressurized water reactor station blackout accidents. NUCLEAR ENGINEERING AND DESIGN, 368. https://doi.org/10.1016/j.nucengdes.2020.110814
Wu, X., Shirvan, K., & Kozlowski, T. (2019). Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification. Journal of Computational Physics, 396, 12–30. https://doi.org/10.1016/j.jcp.2019.06.032
Wang, C., Wu, X., & Kozlowski, T. (2019). Gaussian Process–Based Inverse Uncertainty Quantification for TRACE Physical Model Parameters Using Steady-State PSBT Benchmark. Nuclear Science and Engineering, 193(1-2), 100–114. https://doi.org/10.1080/00295639.2018.1499279
Wang, C., Wu, X., Borowiec, K., & Kozlowski, T. (2018). Bayesian calibration and uncertainty quantification for trace based on PSBT benchmark. Transactions of the American Nuclear Society, 118, 419–422. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85062963843&partnerID=MN8TOARS
Wu, X., Kozlowski, T., Meidani, H., & Shirvan, K. (2018). Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE. Nuclear Engineering and Design, 335, 417–431. https://doi.org/10.1016/j.nucengdes.2018.06.003
Wu, X., Kozlowski, T., Meidani, H., & Shirvan, K. (2018). Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory. Nuclear Engineering and Design, 335, 339–355. https://doi.org/10.1016/j.nucengdes.2018.06.004
Wu, X., Kozlowski, T., & Meidani, H. (2018). Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data. Reliability Engineering and System Safety, 169, 422–436. https://doi.org/10.1016/j.ress.2017.09.029
Wu, X., Shirvan, K., & Kozlowski, T. (2018). On the connection between sensitivity and identifiability for inverse uncertainty quantification. Transactions of the American Nuclear Society, 118, 411–414. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85062995468&partnerID=MN8TOARS
Che, Y., Wu, X., Pastore, G., Hales, J., & Shirvan, K. (2018). Sensitivity and uncertainty analysis for fuel performance evaluation of Cr 2 O 3 -doped UO 2 fuel under LB-LOCA. Transactions of the American Nuclear Society, 119, 440–443. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85060860913&partnerID=MN8TOARS
Wu, X., & Shirvan, K. (2018). System code evaluation of accident tolerant claddings during BWR station blackout accident. Transactions of the American Nuclear Society, 119, 444–447. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85060862292&partnerID=MN8TOARS
Wu, X., Shirvan, K., & Kozlowski, T. (2018). Validating trace void fraction predictive capability using the quantitative area validation metric. Transactions of the American Nuclear Society, 118, 423–426. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85062957450&partnerID=MN8TOARS
Wu, X., Mui, T., Hu, G., Meidani, H., & Kozlowski, T. (2017). Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model. Nuclear Engineering and Design, 319, 185–200. https://doi.org/10.1016/j.nucengdes.2017.05.011
Wu, X., & Kozlowski, T. (2017). Inverse uncertainty quantification of reactor simulations under the Bayesian framework using surrogate models constructed by polynomial chaos expansion. Nuclear Engineering and Design, 313, 29–52. https://doi.org/10.1016/j.nucengdes.2016.11.032
Wu, X., & Kozlowski, T. (2017). Kriging-based inverse uncertainty quantification of BISON fission gas release model. Transactions of the American Nuclear Society, 116, 629–632. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85033468956&partnerID=MN8TOARS
Wang, C., Wu, X., & Kozlowski, T. (2017). Sensitivity and uncertainty analysis of TRACE Physical Model Parameters based on PSBT benchmark using Gaussian process emulator. 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2017, 2017-September. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85051935457&partnerID=MN8TOARS
Wang, C., Wu, X., & Kozlowski, T. (2017). Surrogate-based inverse uncertainty quantification of TRACE physical model parameters using steady-state PSBT void fraction data. 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2017, 2017-September. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85051987392&partnerID=MN8TOARS
Wu, X., & Kozlowski, T. (2015). Coupling of system thermal-hydraulics and Monte-Carlo code: Convergence criteria and quantification of correlation between statistical uncertainty and coupled error. Annals of Nuclear Energy, 75, 377–387. https://doi.org/10.1016/j.anucene.2014.08.016
Rose, M., Downar, T. J., Wu, X., & Kozlowski, T. (2015). Evaluation of accident tolerant FeCrAl coating for PWR cladding under normal operating conditions with coupled neutron transport and fuel performance. Mathematics and Computations, Supercomputing in Nuclear Applications and Monte Carlo International Conference, M and C+SNA+MC 2015, 3, 2334–2344. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84949522107&partnerID=MN8TOARS
Wu, X., Kozlowski, T., & Hales, J. D. (2015). Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions. Annals of Nuclear Energy, 85, 763–775. https://doi.org/10.1016/j.anucene.2015.06.032
Wu, X., & Kozlowski, T. (2014). Coupling of system thermal-hydraulics and monte-carlo method for a consistent thermal-hydraulics-reactor physics feedback. International Congress on Advances in Nuclear Power Plants, ICAPP 2014, 2, 1164–1174. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84907077778&partnerID=MN8TOARS
Wu, X., Kozlowski, T., & Heuser, B. J. (2014). Neutronics analysis of improved accident tolerance LWR fuel by modifing Zircaloy cladding of fuel pins. International Congress on Advances in Nuclear Power Plants, ICAPP 2014, 1, 159–166. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84907085456&partnerID=MN8TOARS
Wu, X., & Kozlowski, T. (2014). Uncertainty quantification for coupled Monte Carlo and thermal-hydraulics codes. Transactions of the American Nuclear Society, 110, 189–191. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84904692027&partnerID=MN8TOARS
Heuser, B. J., Kozlowski, T., & Xu, W. (2013). Engineered Zircaloy cladding modifications for improved accident tolerance of LWR fuel: A summary. LWR Fuel Performance Meeting, Top Fuel 2013, 1, 56–58. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84902344678&partnerID=MN8TOARS