@article{sui_yan_huang_xu_yuan_jing_2015, title={A lightweight yet sound-proof honeycomb acoustic metamaterial}, volume={106}, ISSN={["1077-3118"]}, DOI={10.1063/1.4919235}, abstractNote={In this letter, a class of honeycomb acoustic metamaterial possessing lightweight and yet sound-proof properties is designed, theoretically proven, and then experimentally verified. It is here reported that the proposed metamaterial having a remarkably small mass per unit area at 1.3 kg/m2 can achieve low frequency (<500 Hz) sound transmission loss (STL) consistently greater than 45 dB. Furthermore, the sandwich panel which incorporates the honeycomb metamaterial as the core material yields a STL that is consistently greater than 50 dB at low frequencies. The proposed metamaterial is promising for constructing structures that are simultaneously strong, lightweight, and sound-proof.}, number={17}, journal={APPLIED PHYSICS LETTERS}, author={Sui, Ni and Yan, Xiang and Huang, Tai-Yun and Xu, Jun and Yuan, Fuh-Gwo and Jing, Yun}, year={2015}, month={Apr} } @article{yan_yuan_2015, title={Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge}, volume={137}, ISSN={["1520-8524"]}, DOI={10.1121/1.4921599}, abstractNote={This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.}, number={6}, journal={JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA}, author={Yan, Xiang and Yuan, Fuh-Gwo}, year={2015}, month={Jun}, pages={3523–3533} } @article{sui_yan_huang_xu_yuan_jing_2015, title={Response to "Comment on 'A lightweight yet sound-proof honeycomb acoustic metamaterial'" [Appl. Phys. Lett. 107, 216101 (2015)]}, volume={107}, ISSN={["1077-3118"]}, DOI={10.1063/1.4936238}, abstractNote={First Page}, number={21}, journal={APPLIED PHYSICS LETTERS}, author={Sui, Ni and Yan, Xiang and Huang, Tai-Yun and Xu, Jun and Yuan, Fuh-Gwo and Jing, Yun}, year={2015}, month={Nov} }