Xiangwu Zhang Chen, L., Yuan, Y., Orenstein, R., Yanilmaz, M., He, J., Liu, J., … Zhang, X. (2023). Carbon materials dedicate to bendable supports for flexible lithium-sulfur batteries. ENERGY STORAGE MATERIALS, 60. https://doi.org/10.1016/j.ensm.2023.102817 Gan, R., Wang, Y., Zhang, X., Song, Y., Shi, J., & Ma, C. (2023). Edge atomic Fe sites decorated porous graphitic carbon as an efficient bifunctional oxygen catalyst for Zinc-air batteries. JOURNAL OF ENERGY CHEMISTRY, 83, 602–611. https://doi.org/10.1016/j.jechem.2023.03.056 Jin, Y., Ai, Z., Song, Y., Zhang, X., Shi, J., & Ma, C. (2023). Enhanced lithium storage performance of Si/C composite nanofiber membrane with carbon coating as binder-free and self-supporting anode for lithium-ion battery. MATERIALS RESEARCH BULLETIN, 167. https://doi.org/10.1016/j.materresbull.2023.112429 Han, X., Chen, L., Yanilmaz, M., Lu, X., Yang, K., Hu, K., … Zhang, X. (2023). From nature, requite to nature: Bio-based cellulose and its derivatives for construction of green zinc batteries. CHEMICAL ENGINEERING JOURNAL, 454. https://doi.org/10.1016/j.cej.2022.140311 Zhang, Y., Xia, X., Ma, K., Xia, G., Wu, M., Cheung, Y. H., … Xin, J. H. (2023, May 1). Functional Textiles with Smart Properties: Their Fabrications and Sustainable Applications. ADVANCED FUNCTIONAL MATERIALS, Vol. 5. https://doi.org/10.1002/adfm.202301607 Liu, Y., Li, C., Li, C., Liang, Z., Hu, X., Liu, H., … Tao, J. (2023, March 20). Highly Thermally Stable, Highly Electrolyte-Wettable Hydroxyapatite/Cellulose Nanofiber Hybrid Separators for Lithium- Ion Batteries. ACS APPLIED ENERGY MATERIALS, Vol. 3. https://doi.org/10.1021/acsaem.2c04170 Wang, R., Zhu, M., Zhang, X., & Pham, H. (2023). Lithium-ion battery remaining useful life prediction using a two-phase degradation model with a dynamic change point. JOURNAL OF ENERGY STORAGE, 59. https://doi.org/10.1016/j.est.2022.106457 Cao, X., Ma, C., Luo, L., Chen, L., Cheng, H., Orenstein, R. S., & Zhang, X. (2023, March 24). Nanofiber Materials for Lithium-Ion Batteries. ADVANCED FIBER MATERIALS, Vol. 3. https://doi.org/10.1007/s42765-023-00278-4 Subjalearndee, N., He, N., Cheng, H., Tesatchabut, P., Eiamlamai, P., Phothiphiphit, S., … Zhang, X. (2023). Wet Spinning of Graphene Oxide Fibers with Different MnO2 Additives. ACS APPLIED MATERIALS & INTERFACES, 15(15), 19514–19526. https://doi.org/10.1021/acsami.3c02989 Jia, H., Qiu, M., Tang, C., Liu, H., Xu, J., Tawiah, B., … Zhang, X. (2022, August 1). Advanced Flexible Carbon-Based Current Collector for Zinc Storage. ADVANCED FIBER MATERIALS, Vol. 8. https://doi.org/10.1007/s42765-022-00182-3 Wang, Y., Gan, R., Zhao, S., Ma, W., Zhang, X., Song, Y., … Shi, J. (2022). B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/ solid-state Zn-air batteries. APPLIED SURFACE SCIENCE, 598. https://doi.org/10.1016/j.apsusc.2022.153891 Zhu, J., Cheng, H., Zhu, P., Li, Y., Gao, Q., & Zhang, X. (2022, January 4). Electrospun Nanofibers Enabled Advanced Lithium-Sulfur Batteries. ACCOUNTS OF MATERIALS RESEARCH, Vol. 1. https://doi.org/10.1021/accountsmr.1c00198 Xu, Y., Fang, K., Chen, W., Zhang, X., & Zhang, C. (2022, August 21). Enhanced Reactive Dye Inkjet Printing Performance of Antimicrobial Silk Fabrics Surface Modified with Plasma and Chitosan. FIBERS AND POLYMERS, Vol. 8. https://doi.org/10.1007/s12221-022-4470-z Wei, C., Han, Y., Liu, H., Gan, R., Ma, W., Liu, H., … Ma, C. (2022). Enhancing conversion of polysulfides via porous carbon nanofiber interlayer with dual-active sites for lithium-sulfur batteries. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 625, 946–955. https://doi.org/10.1016/j.jcis.2022.06.047 Gan, R., Wang, Y., Ma, W., Dirican, M., Zhao, S., Song, Y., … Shi, J. (2022). Fe2O3-encapsulated and Fe-Nx-containing hierarchical porous carbon spheres as efficient electrocatalyst for oxygen reduction reaction. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 47(4), 2103–2113. https://doi.org/10.1016/j.ijhydene.2021.10.157 Subjalearndee, N., He, N., Cheng, H., Tesatchabut, P., Eiamlamai, P., Limthongkul, P., … Zhang, X. (2022, January 17). Gamma((sic))-MnO2/rGO Fibered Cathode Fabrication from Wet Spinning and Dip Coating Techniques for Cable-Shaped Zn-Ion Batteries. ADVANCED FIBER MATERIALS, Vol. 1. https://doi.org/10.1007/s42765-021-00118-3 Xie, J., Jia, D., Dirican, M., Xia, Y., Li, C., Liu, Y., … Tao, J. (2022). Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS APPLIED MATERIALS & INTERFACES, 14(14), 16658–16668. https://doi.org/10.1021/acsami.2c01353 Tian, Y., Jia, D., Dirican, M., Cui, M., Fang, D., Yan, C., … Tao, J. (2022, January 14). Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. BIOMACROMOLECULES, Vol. 1. https://doi.org/10.1021/acs.biomac.1c01367 Jia, D., Xie, J., Dirican, M., Fang, D., Yan, C., Liu, Y., … Tao, J. (2022). Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics. COMPOSITES PART B-ENGINEERING, 236. https://doi.org/10.1016/j.compositesb.2022.109803 Shanmugapriya, S., Zhu, P., Ganeshbabu, M., Lee, Y. S., Zhang, X., & Selvan, R. K. (2022). Improved electrocatalytic properties of bundled B/N co-doped electrospun carbon nanofibers with Pt nanostructures through dopant-induced metal-support interaction (DIMSI). MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 284. https://doi.org/10.1016/j.mseb.2022.115880 Yan, C., Zhou, Y., Cheng, H., Orenstein, R., Zhu, P., Yildiz, O., … Zhang, X. (2022). Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. ENERGY STORAGE MATERIALS, 44, 136–144. https://doi.org/10.1016/j.ensm.2021.10.014 Jia, H., Qiu, M., Tang, C., Liu, H., Fu, S., & Zhang, X. (2022, February 18). Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. ECOMAT, Vol. 2. https://doi.org/10.1002/eom2.12190 Cheng, H., Yan, C., Orenstein, R., Dirican, M., Wei, S., Subjalearndee, N., & Zhang, X. (2022, January 25). Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries. ADVANCED FIBER MATERIALS, Vol. 4. https://doi.org/10.1007/s42765-021-00128-1 Jia, H., Wang, Z., Dirican, M., Qiu, S., Chan, C. Y., Fu, S., … Zhang, X. (2021). A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. JOURNAL OF MATERIALS CHEMISTRY A, 9(9), 5597–5605. https://doi.org/10.1039/D0TA11828A Jia, H., Qiu, M., Lan, C., Liu, H., Dirican, M., Fu, S., & Zhang, X. (2021, November 26). Advanced Zinc Anode with Nitrogen-Doping Interface Induced by Plasma Surface Treatment. ADVANCED SCIENCE, Vol. 9. https://doi.org/10.1002/advs.202103952 Ma, C., Wu, L., Dirican, M., Cheng, H., Li, J., Song, Y., … Zhang, X. (2021). Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors. APPLIED SURFACE SCIENCE, 537. https://doi.org/10.1016/j.apsusc.2020.147914 Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., … Zhang, X. (2021, July 14). Developments of Advanced Electrospinning Techniques: A Critical Review. ADVANCED MATERIALS TECHNOLOGIES, Vol. 7. https://doi.org/10.1002/admt.202100410 Fang, D., Yu, H., Dirican, M., Tian, Y., Xie, J., Jia, D., … Tao, J. (2021). Disintegrable, transparent and mechanically robust high-performance antimony tin oxide/nanocellulose/polyvinyl alcohol thermal insulation films. CARBOHYDRATE POLYMERS, 266. https://doi.org/10.1016/j.carbpol.2021.118175 Ma, C., Cao, E., Dirican, M., Subjalearndee, N., Cheng, H., Li, J., … Zhang, X. (2021). Fabrication, structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection. APPLIED SURFACE SCIENCE, 543. https://doi.org/10.1016/j.apsusc.2020.148783 Wang, Y., Gan, R., Liu, H., Dirican, M., Wei, C., Ma, C., … Zhang, X. (2021). Fe3O4/Fe2O3/Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn-air batteries. JOURNAL OF MATERIALS CHEMISTRY A, 9(5), 2764–2774. https://doi.org/10.1039/D0TA10205A Yu, H., Tian, Y., Dirican, M., Fang, D., Yan, C., Xie, J., … Tao, J. (2021). Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. CARBOHYDRATE POLYMERS, 273. https://doi.org/10.1016/j.carbpol.2021.118539 Wang, Y., Gan, R., Ai, Z., Liu, H., Wei, C., Song, Y., … Shi, J. (2021). Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries. CARBON, 181, 87–98. https://doi.org/10.1016/j.carbon.2021.05.016 Neto, D. B. de F., Matsubara, E. Y., Dirican, M., Salussolia, G. F., Zhang, X., & Rosolen, J. M. (2021). Li intercalation in nonwoven carbon nanotube/carbon fiber felt electrode: Influence of carbon fiber type. DIAMOND AND RELATED MATERIALS, 115. https://doi.org/10.1016/j.diamond.2021.108353 Chen, L., Zhang, C., Lu, Z., Cheng, H., Liu, Y., & Zhang, X. (2021). Multifunctional Three-Dimensional Bicontinuous Heterofibrous Scaffold for Kinetically Accelerated Polysulfide Trapping and Conversion in Lithium-Sulfur Batteries. ACS APPLIED ENERGY MATERIALS, 4(12), 14447–14457. https://doi.org/10.1021/acsaem.1c03113 Zheng, Y., Zhou, R., Zhao, H., Ye, F., Zhang, X., & Ge, Y. (2021, March 28). Oriented PAN/PVDF/PAN laminated nanofiber separator for lithium-ion batteries. TEXTILE RESEARCH JOURNAL, Vol. 3. https://doi.org/10.1177/00405175211005027 Yang, H., Abdullah, M., Bright, J., Hu, W., Kittilstved, K., Xu, Y., … Wu, N. (2021). Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: Ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers. JOURNAL OF POWER SOURCES, 495. https://doi.org/10.1016/j.jpowsour.2021.229796 Ma, C., Fan, Q., Dirican, M., Subjalearndee, N., Cheng, H., Li, J., … Zhang, X. (2021). Rational design of meso-/micro-pores for enhancing ion transportation in highly-porous carbon nanofibers used as electrode for supercapacitors. APPLIED SURFACE SCIENCE, 545. https://doi.org/10.1016/j.apsusc.2021.148933 Yu, H., Chen, L., Li, W., Dirican, M., Liu, Y., & Zhang, X. (2021). Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: A free-standing anode in lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS, 863. https://doi.org/10.1016/j.jallcom.2020.158481 Ma, C., Wu, L., Dirican, M., Cheng, H., Li, J., Song, Y., … Zhang, X. (2021). ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 586, 412–422. https://doi.org/10.1016/j.jcis.2020.10.105 Yang, H., Liu, B., Bright, J., Kasani, S., Yang, J., Zhang, X., & Wu, N. (2020). A Single-Ion Conducting UiO-66 Metal–Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 3(4), 4007–4013. https://doi.org/10.1021/acsaem.0c00410 Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M., & Zhang, X. (2020). [Review of A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 76. https://doi.org/10.1016/j.pecs.2019.100788 Yanilmaz, M., Asiri, A. M., & Zhang, X. (2020). Centrifugally spun porous carbon microfibers as interlayer for Li-S batteries. JOURNAL OF MATERIALS SCIENCE, 55(8), 3538–3548. https://doi.org/10.1007/s10853-019-04215-y Yang, H., Bright, J., Chen, B., Zheng, P., Gao, X., Liu, B., … Wu, N. (2020). Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A. https://doi.org/10.1039/C9TA12495K Kim, H., Ramalingam, M., Balakumar, V., Zhang, X., Gao, W., Son, Y.-A., & Bradford, P. D. (2020). Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. CHEMICAL PHYSICS LETTERS, 739. https://doi.org/10.1016/j.cplett.2019.136957 Wu, K., Hu, Y., Cheng, Z., Pan, P., Zhang, M., Jiang, L., … Zhang, X. (2020). Fe3C composite carbon nanofiber interlayer for efficient trapping and conversion of polysulfides in lithium-sulfur batteries. JOURNAL OF ALLOYS AND COMPOUNDS, 847. https://doi.org/10.1016/j.jallcom.2020.156443 Yan, C., Zhu, P., Jia, H., Du, Z., Zhu, J., Orenstein, R., … Zhang, X. (2020). Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 26, 448–456. https://doi.org/10.1016/j.ensm.2019.11.018 Shanmugapriya, S., Kasturi, P. R., Zhu, P., Zhu, J., Yan, C., Zhang, X., & Selvan, R. K. (2020). Hexanedioic acid mediated in situ functionalization of interconnected graphitic 3D carbon nanofibers as Pt support for trifunctional electrocatalysts. Sustainable Energy & Fuels. https://doi.org/10.1039/D0SE00136H Chen, L., Yu, H., Dirican, M., Fang, D., Tian, Y., Yan, C., … Tao, J. (2020). Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics. MACROMOLECULAR RAPID COMMUNICATIONS, 41(19). https://doi.org/10.1002/marc.202000292 Wang, R., Yu, H., Dirican, M., Chen, L., Fang, D., Tian, Y., … Tao, J. (2020). Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS APPLIED ENERGY MATERIALS, 3(1), 785–793. https://doi.org/10.1021/acsaem.9b01943 Chen, L., Yu, H., Li, W., Dirican, M., Liu, Y., & Zhang, X. (2020). [Review of Interlayer design based on carbon materials for lithium-sulfur batteries: a review]. JOURNAL OF MATERIALS CHEMISTRY A, 8(21), 10709–10735. https://doi.org/10.1039/d0ta03028g Xu, N., Hao, Z., Xiao, C., Zhang, X., Feng, Y., Dirican, M., & Yan, C. (2020). Iron/manganese oxide-decorated GO-regulated highly porous polyacrylonitrile hollow fiber membrane and its excellent methylene blue-removing performance. JOURNAL OF MEMBRANE SCIENCE, 607. https://doi.org/10.1016/j.memsci.2020.118180 Xu, N., Ning, L., Chen, S., Hao, Z., Xiao, C., Zhang, X., & Feng, Y. (2020). Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 27(22), 28209–28221. https://doi.org/10.1007/s11356-020-09105-4 Huang, B., Wang, M., Zhang, X., Xu, G., & Gu, Y. (2020). Optimized preparation of LiNi0.6Mn0.2Co0.2O2 with single crystal morphology cathode material for lithium-ion batteries. IONICS, 26(6), 2689–2698. https://doi.org/10.1007/s11581-020-03445-4 Chen, S., Xu, N., Ren, M., Xiao, C., & Zhang, X. (2020). PEI/GO-codecorated poly(acrylic acid-co-hydroxyethyl methacrylate) fiber as a carrier to support iron ions and its catalytic performance for methylene blue decolorization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 57(7), 531–543. https://doi.org/10.1080/10601325.2020.1735940 Hao, Z., Xu, N., Feng, Y., Chen, Y., Xiao, C., & Zhang, X. (2020). Polyacrylonitrile homogeneous blend hollow fiber membrane with stable structure as a substrate to support Fe/Mn oxide and its enhanced capability to purify dye wastewater. JOURNAL OF POLYMER ENGINEERING, 40(6), 469–479. https://doi.org/10.1515/polyeng-2019-0378 Dirican, M., Yanilmaz, M., Asiri, A. M., & Zhang, X. (2020). Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 861, 113995. https://doi.org/10.1016/j.jelechem.2020.113995 Ma, C., Fan, Q., Dirican, M., Song, Y., Zhang, X., & Shi, J. (2020). Porous carbon nanosheets derived from expanded graphite for supercapacitors and sodium-ion batteries. JOURNAL OF MATERIALS SCIENCE, 55(34), 16323–16333. https://doi.org/10.1007/s10853-020-05154-9 Cheng, Z., Hu, Y., Wu, K., Xing, Y., Pan, P., Jiang, L., … Zhang, X. (2020). Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. ELECTROCHIMICA ACTA, 337. https://doi.org/10.1016/j.electacta.2020.135789 Huang, B., Wang, M., Zuo, Y., Zhao, Z., Zhang, X., & Gu, Y. (2020). The effects of reheating process on the electrochemical properties of single crystal LiNi0.6Mn0.2Co0.2O2. SOLID STATE IONICS, 345. https://doi.org/10.1016/j.ssi.2019.115200 Zhao, Y., Wang, J., Li, Z., Zhang, X., Tian, M., Zhang, X., … Zhu, S. (2020). Washable, durable and flame retardant conductive textiles based on reduced graphene oxide modification. CELLULOSE, 27(3), 1763–1771. https://doi.org/10.1007/s10570-019-02884-1 Jia, H., Dirican, M., Sun, N., Chen, C., Yan, C., Zhu, P., … Zhang, X. (2019). Advanced ZnSnS3@rGO Anode Material for Superior Sodium-Ion and Lithium-Ion Storage with Ultralong Cycle Life. CHEMELECTROCHEM, 6(4), 1183–1191. https://doi.org/10.1002/celc.201801333 Kim, H., Ramalingam, M., Balakumar, V., Zhang, X., Gao, W., Son, Y.-A., & Bradford, P. D. (2019). AgNP/crystalline PANI/EBP-composite-based supercapacitor electrode with internal chemical interactions. JOURNAL OF APPLIED POLYMER SCIENCE, 136(44). https://doi.org/10.1002/app.48164 Stoll, K. R., Scholle, F., Zhu, J., Zhang, X., & Ghiladi, R. A. (2019). BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochemical & Photobiological Sciences, 18(8), 1923–1932. https://doi.org/10.1039/c9pp00103d Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics. (2019). ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.9B04596 Chen, C., Dirican, M., & Zhang, X. (2019). CENTRIFUGAL SPINNING-HIGH RATE PRODUCTION OF NANOFIBERS. ELECTROSPINNING: NANOFABRICATION AND APPLICATIONS, pp. 321–338. https://doi.org/10.1016/B978-0-323-51270-1.00010-8 Jia, H., Dirican, M., Aksu, C., Sun, N., Chen, C., Zhu, J., … Zhang, X. (2019). Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 536, 655–663. https://doi.org/10.1016/j.jcis.2018.10.101 Dirican, M., Yan, C., Zhu, P., & Zhang, X. (2019). Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 136, 27–46. https://doi.org/10.1016/j.mser.2018.10.004 Zhu, P., Yan, C., Zhu, J., Zang, J., Jia, H., Dong, X., … Li, Y. (2019). Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. ENERGY STORAGE MATERIALS, 17, 220–225. https://doi.org/10.1016/j.ensm.2018.11.009 Yanilmaz, M., Dirican, M., Asiri, A. M., & Zhang, X. (2019). Flexible polyaniline-carbon nanofiber supercapacitor electrodes. JOURNAL OF ENERGY STORAGE, 24. https://doi.org/10.1016/j.est.2019.100766 Yildiz, O., Dirican, M., Fang, X., Fu, K., Jia, H., Stano, K., … Bradford, P. D. (2019). Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 166(4), A473–A479. https://doi.org/10.1149/2.0821902jes Surendran, S., Shanmugapriya, S., Zhu, P., Yan, C., Vignesh, R. H., Lee, Y. S., … Selvan, R. K. (2019). Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. ELECTROCHIMICA ACTA, 296, 1083–1094. https://doi.org/10.1016/j.electacta.2018.11.078 Shanmugapriya, S., Zhu, P., Yan, C., Asiri, A. M., Zhang, X., & Selvan, R. K. (2019). Multifunctional High-Performance Electrocatalytic Properties of Nb2O5 Incorporated Carbon Nanofibers as Pt Support Catalyst. ADVANCED MATERIALS INTERFACES, 6(17). https://doi.org/10.1002/admi.201900565 Chen, H., Xu, H., Zeng, Y., Ma, T., Wang, W., Liu, L., … Qiu, X. (2019). Quantification on Growing Mass of Solid Electrolyte Interphase and Deposited Mn(II) on the Silicon Anode of LiMn2O4 Full Lithium-Ion Cells. ACS Applied Materials & Interfaces, 11(31), 27839–27845. https://doi.org/10.1021/acsami.9b07400 Zhu, J., Zhu, P., Yan, C., Dong, X., & Zhang, X. (2019). Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 90, 118–163. https://doi.org/10.1016/j.progpolymsci.2018.12.002 Jia, H., Dirican, M., Sun, N., Chen, C., Zhu, P., Yan, C., … Zhang, X. (2019). SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. CHEMICAL COMMUNICATIONS, 55(4), 505–508. https://doi.org/10.1039/c8cc07332e A Novel Bi-Functional Double-Layer rGO–PVDF/PVDF Composite Nanofiber Membrane Separator with Enhanced Thermal Stability and Effective Polysulfide Inhibition for High Performance Lithium-Sulfur Batteries. (2018). 13th Annual NC State University Graduate Student Research Symposium. Selva, R. K., Zhu, P., Yan, C., Zhu, J., Dirican, M., Shanmugavani, A., … Zhang, X. (2018). Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 513, 231–239. https://doi.org/10.1016/j.jcis.2017.11.016 Jia, H., Dirican, M., Chen, C., Zhu, P., Yan, C., Dong, X., … Zhang, X. (2018). Carbon-coated CoS@rGO anode material with enhanced cyclic stability for sodium storage. MATERIALS LETTERS, 233, 158–161. https://doi.org/10.1016/J.MATLET.2018.08.150 Jia, H., Chen, C., Oladele, O., Tang, Y., Li, G., Zhang, X., & Yan, F. (2018). Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage. COMMUNICATIONS CHEMISTRY, 1. https://doi.org/10.1038/s42004-018-0086-z Fu, K., Padbury, R., Toprakci, O., Dirican, M., & Zhang, X. (2018). Conductive textiles. ENGINEERING OF HIGH-PERFORMANCE TEXTILES, pp. 305–334. https://doi.org/10.1016/b978-0-08-101273-4.00017-2 Zhu, P., Zang, J., Zhu, J., Lu, Y., Chen, C., Jiang, M., … Zhang, X. (2018). Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries. CARBON, 126, 594–600. https://doi.org/10.1016/j.carbon.2017.10.063 Jia, H., Sun, N., Dirican, M., Li, Y., Chen, C., Zhu, P., … Zhang, X. (2018). Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 10(51), 44368–44375. https://doi.org/10.1021/acsami.8b13033 Li, Y., Zhu, J., Zhu, P., Yan, C., Jia, H., Kiyak, Y., … al. (2018). Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. JOURNAL OF MEMBRANE SCIENCE, 552, 31–42. https://doi.org/10.1016/j.memsci.2018.01.062 Li, Y., Zhu, J. D., Zhu, P., Yan, C. Y., Jia, H., Kiyak, Y., … Zhang, X. W. (2018). Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. Journal of Membrane Science, 552. Jia, H., Dirican, M., Zhu, J., Chen, C., Yan, C., Zhu, P., … al. (2018). High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning. JOURNAL OF ALLOYS AND COMPOUNDS, 752, 296–302. https://doi.org/10.1016/j.jallcom.2018.04.141 Jia, H., Dirican, M., Zhu, J. D., Chen, C., Yan, C. Y., Zhu, P., … Zhang, X. W. (2018). High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning. Journal of Alloys and Compounds, 752. Zang, J., Ye, J., Qian, H., Lin, Y., Zhang, X., Zheng, M., & Dong, Q. (2018). Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries. ELECTROCHIMICA ACTA, 260, 783–788. https://doi.org/10.1016/j.electacta.2017.12.037 Zhu, P., Zhu, J., Yan, C., Dirican, M., Zang, J., Jia, H., … al. (2018). In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS INTERFACES, 5(10). https://doi.org/10.1002/admi.201701598 Zhu, P., Zhu, J. D., Yan, C. Y., Dirican, M., Zang, J., Jia, H., … Zhang, X. W. (2018). In situ polymerization of nanostructured conductive polymer on 3d sulfur/carbon nanofiber composite network as cathode for high-performance lithium-sulfur batteries. Advanced Materials Interfaces, 5. Zhu, P., Yan, C., Dirican, M., Zhu, J., Zang, J., Selvan, R. K., … Zhang, X. (2018). Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. JOURNAL OF MATERIALS CHEMISTRY A, 6(10), 4279–4285. https://doi.org/10.1039/c7ta10517g Zhu, P., Yan, C. Y., Dirican, M., Zhu, J. D., Zang, J., Selvan, R. K., … Zhang, X. W. (2018). Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 6. Zhu, P., Yan, C. Y., Dirican, M., Zhu, J. D., Zang, J., Selvan, R. K., … Zhang, X. W. (2018). Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 6. Jia, H., Dirican, M., Chen, C., Zhu, P., Yan, C., Li, Y., … al. (2018). Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. ELECTROCHIMICA ACTA, 292, 646–654. https://doi.org/10.1016/j.electacta.2018.09.184 Jia, H., Dirican, M., Chen, C., Zhu, J., Zhu, P., Yan, C., … al. (2018). Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 10(11), 9696–9703. https://doi.org/10.1021/acsami.7b18921 Jia, H., Dirican, M., Chen, C., Zhu, J. D., Zhu, P., Yan, C. Y., … Zhang, X. W. (2018). Reduced graphene oxide-incorporated SnSb@CNF composites as anodes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 10. Jia, H., Dirican, M., Chen, C., Zhu, J. D., Zhu, P., Yan, C. Y., … Zhang, X. W. (2018). Reduced graphene oxide-incorporated SnSb@CNF composites as anodes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 10. Sun, X., DenHartog, E., Zhang, X., & McCord, M. (2018). Study of poly(N-isopropylacrylamide) grafted cotton fabrics initiated by atmospheric pressure plasma. APPLIED SURFACE SCIENCE, 453, 182–191. https://doi.org/10.1016/j.apsusc.2018.05.056 Zhang, C., Wang, L., Yu, M., Qu, L., Men, Y., & Zhang, X. (2018). Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing. APPLIED SURFACE SCIENCE, 434, 198–203. https://doi.org/10.1016/j.apsusc.2017.10.178 Zhang, C. M., Wang, L. B., Yu, M., Qu, L. J., Men, Y. J., & Zhang, X. W. (2018). Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing. Applied Surface Science, 434. Li, Y., Zhu, J., Shi, R., Dirican, M., Zhu, P., Yan, C., … al. (2018). Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. CHEMICAL ENGINEERING JOURNAL, 349, 376–387. https://doi.org/10.1016/j.cej.2018.05.074 Zhu, P., Zhu, J., Zang, J., Chen, C., Lu, Y., Jiang, M., … al. (2017). A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A, 5(29), 15096–15104. https://doi.org/10.1039/c7ta03301j Luo, L., Li, D. W., Zang, J., Chen, C., Zhu, J. D., Qiao, H., … al. (2017). Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance. ENERGY TECHNOLOGY, 5(8), 1364–1372. https://doi.org/10.1002/ente.201600686 He, X., Hu, Y., Shen, Z., Chen, R., Wu, K., Cheng, Z., … Pan, P. (2017). Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS, 729, 313–322. https://doi.org/10.1016/j.jallcom.2017.09.038 Zhu, J., Jasper, S., & Zhang, X. (2017). Chemical characterization of electrospun nanofibers. ELECTROSPUN NANOFIBERS, Vol. 186, pp. 181–206. https://doi.org/10.1016/b978-0-08-100907-9.00008-8 Zhu, J., Jasper, S., & Zhang, X. (2017). Chemical characterization of electrospun nanofibers. Woodhead Publishing Series in Textiles, 186. Ge, Y., Zhu, J., Dirican, M., Jia, H., Yanilmaz, M., Lu, Y., … Zhang, X. (2017). Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. MATERIALS LETTERS, 188, 176–179. https://doi.org/10.1016/j.matlet.2016.11.025 Ge, Y. Q., Zhu, J. D., Dirican, M., Jia, H., Yanilmaz, M., Lu, Y., … Zhang, X. W. (2017). Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. Materials Letters, 188. Chen, R., Hu, Y., Shen, Z., Pan, P., He, X., Wu, K., … Cheng, Z. (2017). Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries. JOURNAL OF MATERIALS CHEMISTRY A, 5(25), 12914–12921. https://doi.org/10.1039/c7ta02528a He, X., Hu, Y., Shen, Z., Chen, R., Wu, K., Cheng, Z., … Pan, P. (2017). GeOx ultra-dispersed in microporous carbon nanofibers: a binder-free anode for high performance lithium-ion battery. ELECTROCHIMICA ACTA, 246, 981–989. https://doi.org/10.1016/j.electacta.2017.06.122 Yanilmaz, M., Zhu, J., Lu, Y., Ge, Y., & Zhang, X. (2017). High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. JOURNAL OF MATERIALS SCIENCE, 52(9), 5232–5241. https://doi.org/10.1007/s10853-017-0764-8 Chen, R., Hu, Y., Shen, Z., He, X., Cheng, Z., Pan, P., … Tang, Z. (2017). Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. JOURNAL OF MATERIALS CHEMISTRY A, 5(41), 21679–21687. https://doi.org/10.1039/c7ta05445a Chen, Y., Hu, Y., Shen, Z., Chen, R., He, X., Zhang, X., … Wu, K. (2017). Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. JOURNAL OF POWER SOURCES, 342, 467–475. https://doi.org/10.1016/j.jpowsour.2016.12.089 Chen, Y. L., Hu, Y., Shen, Z., Chen, R. Z., He, X., Zhang, X. W., … Wu, K. S. (2017). Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. Journal of Power Sources, 342. Chen, C., Li, G., Zhu, J., Lu, Y., Jiang, M., Hu, Y., … Zhang, X. (2017). In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. CARBON, 120, 380–391. https://doi.org/10.1016/j.carbon.2017.05.072 Zhu, J., Ge, Y., Jasper, S., & Zhang, X. (2017). Physical characterization of electrospun nanofibers. ELECTROSPUN NANOFIBERS, Vol. 186, pp. 207–238. https://doi.org/10.1016/b978-0-08-100907-9.00009-x Zhu, J., Ge, Y., Jasper, S., & Zhang, X. (2017). Physical characterization of electrospun nanofibers. Woodhead Publishing Series in Textiles, 186. Li, Y., Zou, C., Shao, J., Zhang, X., & Li, Y. (2017). Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro-nano structure via centrifugal spinning. RSC ADVANCES, 7(18), 11041–11048. https://doi.org/10.1039/c6ra25813a He, N., Yildiz, O., Pan, Q., Zhu, J., Zhang, X., Bradford, P. D., & Gao, W. (2017). Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. JOURNAL OF POWER SOURCES, 343, 492–501. https://doi.org/10.1016/j.jpowsour.2017.01.091 Shen, Z., Hu, Y., Chen, R., He, X., Chen, Y., Shao, H., … Wu, K. (2017). Split Sn-Cu Alloys on Carbon Nanofibers by One-step Heat Treatment for Long-Lifespan Lithium-Ion Batteries. ELECTROCHIMICA ACTA, 225, 350–357. https://doi.org/10.1016/j.electacta.2016.12.143 Shen, Z., Hu, Y., Chen, R. Z., He, X., Chen, Y. L., Shao, H. F., … Wu, K. S. (2017). Split Sn-Cu alloys on carbon nanofibers by one-step heat treatment for long-lifespan lithium-ion batteries. Electrochimica Acta, 225. Xia, X., Li, Z., Xue, L., Qiu, Y., Zhang, C., & Zhang, X. (2017). The electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. JOURNAL OF MATERIALS RESEARCH, 32(6), 1184–1193. https://doi.org/10.1557/jmr.2016.508 Luo, L., Qiao, H., Xu, W. Z., Li, D. W., Zhu, J. D., Chen, C., … al. (2017). Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 21(5), 1385–1395. https://doi.org/10.1007/s10008-016-3501-3 Luo, L., Qiao, H., Xu, W. Z., Li, D. W., Zhu, J. D., Chen, C., … Wei, Q. F. (2017). Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. Journal of Solid State Electrochemistry, 21. Xia, X., Li, Z. Y., Xue, L. G., Qiu, Y. P., Zhang, C. Y., & Zhang, X. W. (2017). electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. Journal of Materials Research, 32. Zhu, P., Zhu, J. D., Zang, J., Chen, C., Lu, Y., Jiang, M. J., … Zhang, X. W. (2017). novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 5. A Superior Carbon-Coated Separator for Achieving Exceptional High Performance Lithium-Sulfur Batteries. (2016). 11th Annual Graduate Student Research Symposium. Zhu, J., Ge, Y., Kim, D., Lu, Y., Chen, C., Jiang, M., & Zhang, X. (2016). A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. NANO ENERGY, 20, 176–184. https://doi.org/10.1016/j.nanoen.2015.12.022 Dirican, M., & Zhang, X. (2016). Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries. JOURNAL OF POWER SOURCES, 327, 333–339. https://doi.org/10.1016/j.jpowsour.2016.07.069 Chen, C., Li, G., Lu, Y., Zhu, J., Jiang, M., Hu, Y., … Zhang, X. (2016). Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries. ELECTROCHIMICA ACTA, 222, 1751–1760. https://doi.org/10.1016/j.electacta.2016.11.170 Lu, Y., Fu, K., Zhu, J., Chen, C., Yanilmaz, M., Dirican, M., … Zhang, X. (2016). Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. JOURNAL OF MATERIALS SCIENCE, 51(9), 4549–4558. https://doi.org/10.1007/s10853-016-9768-z Shen, Z., Hu, Y., Chen, Y., Chen, R., He, X., Zhang, X., … Zhang, Y. (2016). Controllable synthesis of carbon-coated Sn-SnO2-carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. ELECTROCHIMICA ACTA, 188, 661–670. https://doi.org/10.1016/j.electacta.2015.12.062 Shen, Z., Hu, Y., Chen, Y. L., Chen, R. Z., He, X., Zhang, X. W., … Zhang, Y. (2016). Controllable synthesis of carbon-coated Sn-SnO2-carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochimica Acta, 188. Chen, R., Hu, Y., Shen, Z., Chen, Y., He, X., Zhang, X., & Zhang, Y. (2016). Controlled Synthesis of Carbon Nanofibers Anchored with ZnxCo3-xO4 Nanocubes as Binder-Free Anode Materials for Lithium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 8(4), 2591–2599. https://doi.org/10.1021/acsami.5b10340 Chen, R. Z., Hu, Y., Shen, Z., Chen, Y. L., He, X., Zhang, X. W., & Zhang, Y. (2016). Controlled synthesis of carbon nanofibers anchored with ZnxCo3-xO4 nanocubes as binder-free anode materials for lithium ion batteries. ACS Applied Materials & Interfaces, 8. Luo, L., Xu, W. Z., Xia, Z. K., Fei, Y. Q., Zhu, J. D., Chen, C., … al. (2016). Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes. CERAMICS INTERNATIONAL, 42(9), 10826–10832. https://doi.org/10.1016/j.ceramint.2016.03.211 Shen, Z., Hu, Y., Chen, Y., Chen, R., He, X., Geng, L., … Wu, K. (2016). Excimer Ultraviolet-Irradiated Carbon Nanofibers as Advanced Anodes for Long Cycle Life Lithium-Ion Batteries. SMALL, 12(38), 5269–5275. https://doi.org/10.1002/smll.201601158 Shen, Z., Hu, Y., Chen, Y., Chen, R., He, X., Geng, L., … Wu, K. (2016). Excimer ultraviolet-irradiated carbon nanofibers as advanced anodes for long cycle life lithium-ion batteries. Small (Weinheim An Der Bergstrasse, Germany), 12. Graphene Oxide Enhanced Polyacrylonitrile Nanofiber Membrane Used as Separator for Achieving High-Performance Lithium-Sulfur Batteries. (2016). Materials Research Society Spring Meeting. Zhu, J., Yildirim, E., Aly, K., Shen, J., Chen, C., Lu, Y., … Zhang, X. (2016). Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study. JOURNAL OF MATERIALS CHEMISTRY A, 4(35), 13572–13581. https://doi.org/10.1039/c6ta04577d Zhu, J., Chen, C., Lu, Y., Zang, J., Jiang, M., Kim, D., & Zhang, X. (2016). Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries. CARBON, 101, 272–280. https://doi.org/10.1016/j.carbon.2016.02.007 Shen, Z., Hu, Y., Chen, Y., Chen, R., He, X., Geng, L., … Wu, K. (2016). Lithium-Ion Batteries: Excimer Ultraviolet-Irradiated Carbon Nanofibers as Advanced Anodes for Long Cycle Life Lithium-Ion Batteries (Small 38/2016). Small, 12(38), 5231–5231. https://doi.org/10.1002/SMLL.201670192 Alaboina, P. K., Ge, Y., Uddin, M.-J., Liu, Y., Lee, D., Park, S., … Cho, S.-J. (2016). Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance. ACS APPLIED MATERIALS & INTERFACES, 8(19), 12127–12133. https://doi.org/10.1021/acsami.6b00895 Stanley, S., Scholle, F., Zhu, J., Lu, Y., Zhang, X., Situ, X., & Ghiladi, R. (2016). Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. Nanomaterials, 6(4), 77. https://doi.org/10.3390/nano6040077 Jiang, M., Zhu, J., Chen, C., Lu, Y., Ge, Y., & Zhang, X. (2016). Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors. ACS APPLIED MATERIALS & INTERFACES, 8(5), 3473–3481. https://doi.org/10.1021/acsami.5b11984 Zhu, J., Lu, Y., Chen, C., Ge, Y., Jasper, S., Leary, J. D., … Zhang, X. (2016). Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. JOURNAL OF ALLOYS AND COMPOUNDS, 672, 79–85. https://doi.org/10.1016/j.jallcom.2016.02.160 Chen, Y., Hu, Y., Shen, Z., Chen, R., He, X., Zhang, X., … Wu, K. (2016). Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. ELECTROCHIMICA ACTA, 210, 53–60. https://doi.org/10.1016/j.electacta.2016.05.086 Chen, Y. L., Hu, Y., Shen, Z., Chen, R. Z., He, X., Zhang, X. W., … Wu, K. S. (2016). Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochimica Acta, 210. Yanilmaz, M., Lu, Y., Zhu, J., & Zhang, X. (2016). Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. JOURNAL OF POWER SOURCES, 313, 205–212. https://doi.org/10.1016/j.jpowsour.2016.02.089 Yang, X., Yuan, W., Li, D., & Zhang, X. (2016). Study on an improved bio-electrode made with glucose oxidase immobilized mesoporous carbon in biofuel cells. RSC ADVANCES, 6(29), 24451–24457. https://doi.org/10.1039/c5ra27111h Jiang, M., Zhu, J., Chen, C., Lu, Y., Pampal, E. S., Luo, L., … Zhang, X. (2016). Superior high-voltage aqueous carbon/ carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. JOURNAL OF MATERIALS CHEMISTRY A, 4(42), 16588–16596. https://doi.org/10.1039/c6ta07063a Jiang, M. J., Zhu, J. D., Chen, C., Lu, Y., Pampal, E. S., Luo, L., … Zhang, X. W. (2016). Superior high-voltage aqueous carbon/ carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 4. Chen, C., Lu, Y., Ge, Y., Zhu, J., Jiang, H., Li, Y., … Zhang, X. (2016). Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries. ENERGY TECHNOLOGY, 4(11), 1440–1449. https://doi.org/10.1002/ente.201600205 Zhu, J., Yanilmaz, M., Fu, K., Chen, C., Lu, Y., Ge, Y., … Zhang, X. (2016). Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. JOURNAL OF MEMBRANE SCIENCE, 504, 89–96. https://doi.org/10.1016/j.memsci.2016.01.020 A Novel Separator for Lithium-Sulfur Batteries. (2015). Materials Research Society Fall Meeting. Hsieh, B.-Y., Kim, J., Zhu, J., Li, S., Zhang, X., & Jiang, X. (2015). A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film. APPLIED PHYSICS LETTERS, 106(2). https://doi.org/10.1063/1.4905659 Advanced Materials for High Power and High Energy Density Electrochemical Capacitors. (2015). BASF North America Innovation Netwroking Event. Carbon Coated Silicon/Reduced Graphene Oxide Hybrid Structure as the Anode Material in Lithium-ion Batteries. (2015). 2015 NC State University Undergraduate Research Symposium. Dirican, M., Lu, Y., Ge, Y., Yildiz, O., & Zhang, X. (2015). Carbon-Confined Sno(2)-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. ACS APPLIED MATERIALS & INTERFACES, 7(33), 18387–18396. https://doi.org/10.1021/acsami.5b04338 Lu, Y., Fu, K., Zhang, S., Li, Y., Chen, C., Zhu, J., … Zhang, X. (2015). Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. JOURNAL OF POWER SOURCES, 273, 502–510. https://doi.org/10.1016/j.jpowsour.2014.09.130 Lu, Y., Yanilmaz, M., Chen, C., Dirican, M., Ge, Y., Zhu, J., & Zhang, X. (2015). Centrifugally Spun SnO2Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodium-Ion Batteries. ChemElectroChem, 2(12), 1947–1956. https://doi.org/10.1002/celc.201500367 Jiang, H., Ge, Y., Fu, K., Lu, Y., Chen, C., Zhu, J., … Zhang, X. (2015). Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. JOURNAL OF MATERIALS SCIENCE, 50(3), 1094–1102. https://doi.org/10.1007/s10853-014-8666-5 Dirican, M., Yildiz, O., Lu, Y., Fang, X., Jiang, H., Kizil, H., & Zhang, X. (2015). Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries. ELECTROCHIMICA ACTA, 169, 52–60. https://doi.org/10.1016/j.electacta.2015.04.035 Ge, Y., Jiang, H., Zhu, J., Lu, Y., Chen, C., Hu, Y., … Zhang, X. (2015). High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. ELECTROCHIMICA ACTA, 157, 142–148. https://doi.org/10.1016/j.electacta.2015.01.086 Yildiz, O., Stano, K., Faraji, S., Stone, C., Willis, C., Zhang, X., … Bradford, P. D. (2015). High performance carbon nanotube - polymer nanofiber hybrid fabrics. NANOSCALE, 7(40), 16744–16754. https://doi.org/10.1039/c5nr02732b High-Performance Room-Temperature Sodium-Ion Batteries for Low-Cost Stationary Energy Storage. (2015). BASF North America Innovation Netwroking Event. Zang, J., Ye, J., Fang, X., Zhang, X., Zheng, M., & Dong, Q. (2015). Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance. ELECTROCHIMICA ACTA, 186, 436–441. https://doi.org/10.1016/j.electacta.2015.11.002 Lu, Y., Yanilmaz, M., Chen, C., Ge, Y., Dirican, M., Zhu, J., … Zhang, X. (2015). Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Materials, 1, 74–81. https://doi.org/10.1016/j.ensm.2015.09.005 Alcoutlabi, M., Lee, H., & Zhang, X. (2015). Nanofiber-Based Membrane Separators for Lithium-ion Batteries. MULTIFUNCTIONAL POLYMERIC AND HYBRID MATERIALS, Vol. 1718, pp. 157–161. https://doi.org/10.1557/opl.2015.556 Alcoutlabi, M., Lee, H., & Zhang, X. W. (2015). Nanofiber-based membrane separators for lithium-ion batteries. Materials Research Society Symposium Proceedings, 1718. Li, D., Lv, P., Zhu, J., Lu, Y., Chen, C., Zhang, X., & Wei, Q. (2015). NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications. SENSORS, 15(11), 29419–29433. https://doi.org/10.3390/s151129419 Zhu, J., Chen, C., Lu, Y., Ge, Y., Jiang, H., Fu, K., & Zhang, X. (2015). Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. CARBON, 94, 189–195. https://doi.org/10.1016/j.carbon.2015.06.076 Photoactivated Materials for Antimicrobial Applications. (2015). BASF North America Innovation Netwroking Event. Nawalakhe, R., Shi, Q., Vitchuli, N., Bourham, M. A., Zhang, X., & McCord, M. G. (2015). Plasma-Assisted Preparation of High-Performance Chitosan Nanofibers/Gauze Composite Bandages. INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 64(14), 709–717. https://doi.org/10.1080/00914037.2014.1002098 Yanilmaz, M., & Zhang, X. (2015). Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries. POLYMERS, 7(4), 629–643. https://doi.org/10.3390/polym7040629 Li, D., Li, G., Lv, P., Ullah, N., Wang, C., Wang, Q., … Wei, Q. (2015). Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications. RSC ADVANCES, 5(39), 30602–30609. https://doi.org/10.1039/c5ra03310a Li, D. W., Li, G. H., Lv, P. F., Ullah, N., Wang, C., Wang, Q. Q., … Wei, Q. F. (2015). Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications. RSC Advances, 5. Chen, Y., Hu, Y., Shao, J., Shen, Z., Chen, R., Zhang, X., … Xing, X. (2015). Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. JOURNAL OF POWER SOURCES, 298, 130–137. https://doi.org/10.1016/j.jpowsour.2015.08.058 Chen, Y. L., Hu, Y., Shao, J. Z., Shen, Z., Chen, R. Z., Zhang, X. W., … Xing, X. L. (2015). Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. Journal of Power Sources, 298. Dirican, M., Lu, Y., Fu, K., Kizil, H., & Zhang, X. (2015). SiO2-confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries. RSC ADVANCES, 5(44), 34744–34751. https://doi.org/10.1039/c5ra03129j Yanilmaz, M., Lu, Y., Li, Y., & Zhang, X. (2015). SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. JOURNAL OF POWER SOURCES, 273, 1114–1119. https://doi.org/10.1016/j.jpowsour.2014.10.015 Ge, Y., Zhu, J., Lu, Y., Chen, C., Qiu, Y., & Zhang, X. (2015). The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites. ELECTROCHIMICA ACTA, 176, 989–996. https://doi.org/10.1016/j.electacta.2015.07.105 Shen, Z., Hu, Y., Chen, Y., Zhang, X., Wang, K., & Chen, R. (2015). Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. JOURNAL OF POWER SOURCES, 278, 660–667. https://doi.org/10.1016/j.jpowsour.2014.12.106 Shen, Z., Hu, Y., Chen, Y. L., Zhang, X. W., Wang, K. H., & Chen, R. Z. (2015). Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. Journal of Power Sources, 278. Chen, C., Fu, K., Lu, Y., Zhu, J., Xue, L., Hu, Y., & Zhang, X. (2015). Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC ADVANCES, 5(39), 30793–30800. https://doi.org/10.1039/c5ra01729g Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). [Review of A review of recent developments in membrane separators for rechargeable lithium-ion batteries]. ENERGY & ENVIRONMENTAL SCIENCE, 7(12), 3857–3886. https://doi.org/10.1039/c4ee01432d Advanced Lithium-Sulfur Batteries. (2014). Triangle Student Research Competition. Advanced Silicon-Carbon Composites and Sulfur-Carbon Composites for Lithium-Ion- Sulfur Batteries. (2014). TECS Scientific Advisory Board Meeting. Advanced Silicon-Carbon Composites as Anode for Lithium-ion Batteries. (2014). FREEDM Systems Center Industry Annual Review and Conference. Dirican, M., Yanilmaz, M., Fu, K., Yildiz, O., Kizil, H., Hu, Y., & Zhang, X. (2014). Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 161(14), A2197–A2203. https://doi.org/10.1149/2.0811414jes Dirican, M., Yanilmaz, M., Fu, K., Lu, Y., Kizil, H., & Zhang, X. (2014). Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. JOURNAL OF POWER SOURCES, 264, 240–247. https://doi.org/10.1016/j.jpowsour.2014.04.102 Centrifugal Spinning-A Novel Approach to Fabricate Porous Carbon Nanofibers as Electrodes for Supercapacitors. (2014). TECS Scientific Advisory Board Meeting. Zhang, X., & Lu, Y. (2014). [Review of Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost]. POLYMER REVIEWS, 54(4), 677–701. https://doi.org/10.1080/15583724.2014.935858 Zhang, X. W., & Lu, Y. (2014). Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54. Fu, K., Lu, Y., Dirican, M., Chen, C., Yanilmaz, M., Shi, Q., … Zhang, X. (2014). Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries. NANOSCALE, 6(13), 7489–7495. https://doi.org/10.1039/c4nr00518j Li, Y., Xu, G., Yao, Y., Xue, L., Yanilmaz, M., Lee, H., & Zhang, X. (2014). Coaxial electrospun Si/C-C core-shell composite nanofibers as binder-free anodes for lithium-ion batteries. SOLID STATE IONICS, 258, 67–73. https://doi.org/10.1016/j.ssi.2014.02.003 Li, S., Chen, C., Fu, K., Xue, L., Zhao, C., Zhang, S., … Zhang, X. (2014). Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. SOLID STATE IONICS, 254, 17–26. https://doi.org/10.1016/j.ssi.2013.10.063 Li, S. L., Chen, C., Fu, K., Xue, L. G., Zhao, C. X., Zhang, S., … Zhang, X. W. (2014). Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. Solid State Ionics, 254. Ge, Y., Jiang, H., Fu, K., Zhang, C., Zhu, J., Chen, C., … Zhang, X. (2014). Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. JOURNAL OF POWER SOURCES, 272, 860–865. https://doi.org/10.1016/j.jpowsour.2014.08.131 Ge, Y. Q., Jiang, H., Fu, K., Zhang, C. H., Zhu, J. D., Chen, C., … Zhang, X. W. (2014). Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. Journal of Power Sources, 272. Electrospun Nanofibers for Design and Fabrication of Electrocatalysts and Electrolyte Membranes for Fuel cells. (2014). Electrospun Nanofibers for Energy and Environmental Applications. https://doi.org/10.1007/978-3-642-54160-5_2 Yanilmaz, M., Dirican, M., & Zhang, X. (2014). Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. ELECTROCHIMICA ACTA, 133, 501–508. https://doi.org/10.1016/j.electacta.2014.04.109 Dirican, M., Yanilmaz, M., & Zhang, X. (2014). Free-standing polyaniline-porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC ADVANCES, 4(103), 59427–59435. https://doi.org/10.1039/c4ra09103e Zhang, X. (2014). Fundamentals of fiber science. Lancaster, Pa.: Destech Publications, Inc. Zhang, X. (2014). Fundamentals of fiber science. Yanilmaz, M., Lu, Y., Dirican, M., Fu, K., & Zhang, X. (2014). Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. JOURNAL OF MEMBRANE SCIENCE, 456, 57–65. https://doi.org/10.1016/j.memsci.2014.01.022 Li, S., Chen, C., Fu, K., White, R., Zhao, C., Bradford, P. D., & Zhang, X. (2014). Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. JOURNAL OF POWER SOURCES, 253, 366–372. https://doi.org/10.1016/j.jpowsour.2013.12.017 New Sodium-Ion Battery Electrode Materials. (2014). FREEDM Systems Center Annual Review Meeting. Li, Y., Hu, Y., Lu, Y., Zhang, S., Xu, G., Fu, K., … Zhang, X. (2014). One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. JOURNAL OF POWER SOURCES, 254, 33–38. https://doi.org/10.1016/j.jpowsour.2013.12.044 Li, Y., Hu, Y., Lu, Y., Zhang, S., Xu, G. J., Fu, K., … Zhang, X. W. (2014). One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. Journal of Power Sources, 254. Polyacrylonitrile-Based Carbon Anodes for Sodium-Ion Batteries. (2014). NC State Summer Undergraduate Research Symposium. Lu, Y., Zhang, S., Li, Y., Xue, L., Xu, G., & Zhang, X. (2014). Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. JOURNAL OF POWER SOURCES, 247, 770–777. https://doi.org/10.1016/j.jpowsour.2013.09.018 Lee, H., Alcoutlabi, M., Toprakci, O., Xu, G., Watson, J. V., & Zhang, X. (2014). Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 18(9), 2451–2458. https://doi.org/10.1007/s10008-014-2501-4 Fu, K., Li, Y., Dirican, M., Chen, C., Lu, Y., Zhu, J., … al. (2014). Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries. CHEMICAL COMMUNICATIONS, 50(71), 10277–10280. https://doi.org/10.1039/c4cc04970e Fu, K., Li, Y. P., Dirican, M., Chen, C., Lu, Y., Zhu, J. D., … Zhang, X. W. (2014). Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries. Chemical Communications, 50. Xia, X., Wang, X., Zhou, H., Niu, X., Xue, L., Zhang, X., & Wei, Q. (2014). The effects of electrospinning parameters on coaxial Sn/C nanofibers: Morphology and lithium storage performance. ELECTROCHIMICA ACTA, 121, 345–351. https://doi.org/10.1016/j.electacta.2014.01.004 Li, Y., Sun, Y., Xu, G., Lu, Y., Zhang, S., Xue, L., … Zhang, X. (2014). Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. JOURNAL OF MATERIALS CHEMISTRY A, 2(29), 11417–11425. https://doi.org/10.1039/c4ta01562b Li, Y., Sun, Y. J., Xu, G. J., Lu, Y., Zhang, S., Xue, L. G., … Zhang, X. W. (2014). Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. Journal of Materials Chemistry A, 2. Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. W. (2014). review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7. Xue, L., Xia, X., Tucker, T., Fu, K., Zhang, S., Li, S., & Zhang, X. (2013). A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. JOURNAL OF MATERIALS CHEMISTRY A, 1(44), 13807–13813. https://doi.org/10.1039/c3ta12921g Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-Architecture for Flexible Lithium-ion Battery Electrodes. (2013). 2013 MRS Fall Meeting & Exhibit. Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-Architecture for Flexible Lithium-ion Battery Electrodes. (2013). MRS/ASM/AVS/AReMS Meeting. Fu, K., Yildiz, O., Bhanushali, H., Wang, Y., Stano, K., Xue, L., … Bradford, P. D. (2013). Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes. ADVANCED MATERIALS, 25(36), 5109–5114. https://doi.org/10.1002/adma.201301920 Aligned Carbon Nanotube-Silicon f Sheets: A Novel Nano-Architecture for Flexible Lithium-ion Battery Electrodes. (2013). North Carolina American Chemical Society’s 127th Sectional Conference. Vitchuli, N., Shi, Q., Nowak, J., Nawalakhe, R., Sieber, M., Bourham, M., … McCord, M. (2013). Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 27(8), 924–938. https://doi.org/10.1080/01694243.2012.727164 Xue, L., Xu, G., Li, Y., Li, S., Fu, K., Shi, Q., & Zhang, X. (2013). Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 5(1), 21–25. https://doi.org/10.1021/am3027597 Li, S., Fu, K., Xue, L., Toprakci, O., Li, Y., Zhang, S., … Qiao, S. (2013). Co3O4/Carbon Composite Nanofibers for Use as Anode Material in Advanced Lithium-Ion Batteries. Nanotechnology For Sustainable Energy, 1140, 55–66. Li, S. L., Fu, K., Xue, L. G., Toprakci, O., Li, Y., Zhang, S., … Zhang, X. (2013). Co3O4/carbon composite nanofibers for use as anode material in advanced lithium-ion batteries. Nanotechnology for sustainable energy, 1140, 55–66. https://doi.org/10.1021/bk-2013-1140.ch003 Fu, K., Xue, L. G., Yildiz, O., Li, S. L., Lee, H., Li, Y., … al. (2013). Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. NANO ENERGY, 2(5), 976–986. https://doi.org/10.1016/j.nanoen.2013.03.019 Lee, H., Alcoutlabi, M., Watson, J. V., & Zhang, X. (2013). Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. JOURNAL OF APPLIED POLYMER SCIENCE, 129(4), 1939–1951. https://doi.org/10.1002/app.38894 Li, Y., Xu, G., Xue, L., Zhang, S., Yao, Y., Lu, Y., … Zhang, X. (2013). Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 160(3), A528–A534. https://doi.org/10.1149/2.031304jes Yanilmaz, M., Chen, C., & Zhang, X. (2013). Fabrication and Characterization of SiO2/PVDF Composite Nanofiber-Coated PP Nonwoven Separators for Lithium-Ion Batteries. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 51(23), 1719–1726. https://doi.org/10.1002/polb.23387 Fast and Low-Cost Production of Nanofibers by Centrifugal Spinning. (2013). College of Textiles’ Composites Symposium. Flexible and Binder-Free Design: Nonwoven Structure Based Si Materials as Anodes for Lithium-Ion Batteries. (2013). The 8th Annual NC State University Graduate Student Research Symposium. Zhang, M., Gao, B., Li, Y., Zhang, X., & Hardin, I. R. (2013). Graphene-coated pyrogenic carbon as an anode material for lithium battery. CHEMICAL ENGINEERING JOURNAL, 229, 399–403. https://doi.org/10.1016/j.cej.2013.06.025 Liang, Y., Cheng, S., Zhao, J., Zhang, C., Sun, S., Zhou, N., … Zhang, X. (2013). Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. JOURNAL OF POWER SOURCES, 240, 204–211. https://doi.org/10.1016/j.jpowsour.2013.04.019 High-Power and High-Energy Electrochemical Electrodes and Supercapacitors. (2013). Center for Dielectric Studies 2013 Fall Meeting. Li, S., Xue, L., Fu, K., Xia, X., Zhao, C., & Zhang, X. (2013). High-performance Sn/Carbon Composite Anodes Derived from Sn(II) Acetate/Polyacrylonitrile Precursors by Electrospinning Technology. CURRENT ORGANIC CHEMISTRY, 17(13), 1448–1454. https://doi.org/10.2174/1385272811317130011 Hybrid PEMs Incorporated with Solid Superacidic Nanofibers. (2013). 2013 MRS Spring Meeting & Exhibit. Li, Y., Xu, G., Yao, Y., Xue, L., Zhang, S., Lu, Y., … Zhang, X. (2013). Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 17(5), 1393–1399. https://doi.org/10.1007/s10008-013-2005-7 Shi, Q., Vitchuli, N., Nowak, J., Jiang, S., Caldwell, J. M., Breidt, F., … McCord, M. (2013). Multifunctional and durable nanofiber-fabric-layered composite for protective application. Journal of Applied Polymer Science, 128. https://doi.org/https://doi.org/10.1002/app.38465 Nano in Lithium-Ion Battery. (2013). FREEDM Systems Center Student Research Workshop. Novel Nanofibers for Biomedical Textiles. (2013). Joint US EPA-NCSU Interactive Collaboration Forum and Poster Session. Nawalakhe, R., Shi, Q., Vitchuli, N., Noar, J., Caldwell, J. M., Breidt, F., … McCord, M. G. (2013). Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. Journal of Applied Polymer Science, 129(2), 916–923. https://doi.org/10.1002/app.38804 Nawalakhe, R., Shi, Q., Vitchuli, N., Noar, J., Caldwell, J. M., Breidt, F., … McCord, M. G. (2013). Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. Journal of Applied Polymer Science, 129. https://doi.org/https://doi.org/10.1002/app.38804 Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., & Zhang, X. (2013). Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. EUROPEAN POLYMER JOURNAL, 49(12), 3834–3845. https://doi.org/10.1016/j.eurpolymj.2013.09.017 Lee, H., Alcoutlabi, M., Watson, J. V., & Zhang, X. (2013). Polyvinylidene fluoride-co-chlorotrifluoroethylene and polyvinylidene fluoride-co-hexafluoropropylene nanofiber-coated polypropylene microporous battery separator membranes. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 51(5), 349–357. https://doi.org/10.1002/polb.23216 Alcoutlabi, M., Lee, H., Watson, J. V., & Zhang, X. (2013). Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. JOURNAL OF MATERIALS SCIENCE, 48(6), 2690–2700. https://doi.org/10.1007/s10853-012-7064-0 Fu, K., Xue, L., Yildiz, O., Li, S., Lee, H., Li, Y., … al. (2013). Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. NANO ENERGY, 2(3), 361–367. https://doi.org/10.1016/j.nanoen.2012.11.001 Xue, L. G., Fu, K., Li, Y., Xu, G. J., Lu, Y., Zhang, S., … Zhang, X. W. (2013). Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. Nano Energy, 2. Li, Y., Guo, B., Ji, L., Lin, Z., Xu, G., Liang, Y., … Zhang, X. (2013). Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. CARBON, 51, 185–194. https://doi.org/10.1016/j.carbon.2012.08.027 Xia, X., Li, S., Wang, X., Liu, J., Wei, Q., & Zhang, X. (2013). Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. JOURNAL OF MATERIALS SCIENCE, 48(9), 3378–3385. https://doi.org/10.1007/s10853-012-7122-7 Toprakci, O., Toprakci, H. A. K., Li, Y., Ji, L., Xue, L., Lee, H., … Zhang, X. (2013). Synthesis and characterization of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. JOURNAL OF POWER SOURCES, 241, 522–528. https://doi.org/10.1016/j.jpowsour.2013.04.155 Toprakci, O., Toprakci, H. A. K., Li, Y., Ji, L. W., Xue, L. G., Lee, H., … Zhang, X. W. (2013). Synthesis and characterization of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 241. Xue, L., Zhang, S., Li, S., Lu, Y., Toprakci, O., Xia, X., … Zhang, X. (2013). Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS, 577, 560–563. https://doi.org/10.1016/j.jallcom.2013.07.029 Xue, L. G., Xia, X., Tucker, T., Fu, K., Zhang, S., Li, S. L., & Zhang, X. W. (2013). simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. Journal of Materials Chemistry A, 1. Toprakci, O., Toprakci, H. A. K., Ji, L., Xu, G., Lin, Z., & Zhang, X. (2012). Carbon Nanotube-Loaded Electrospun LiFePO4/Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 4(3), 1273–1280. https://doi.org/10.1021/am201527r Toprakci, O., Toprakci, H. A. K., Ji, L. W., Xu, G. J., Lin, Z., & Zhang, X. W. (2012). Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. ACS Applied Materials & Interfaces, 4. Zhang, S., Lin, Z., Ji, L., Li, Y., Xu, G., Xue, L., … Zhang, X. (2012). Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. Journal of Materials Chemistry, 22(29), 14661–14666. https://doi.org/10.1039/c2jm32213g Zhang, X., Ji, L., Lin, Z., Li, Y., Shao, J. H., & Fan, Q. G. (2012). Designing Energy-Storage Devices from Textile Materials. ECO-DYEING, FINISHING AND GREEN CHEMISTRY, Vol. 441, pp. 231–234. https://doi.org/10.4028/www.scientific.net/amr.441.231 Roe, B., Kotek, R., & Zhang, X. (2012). Durable hydrophobic cotton surfaces prepared using silica nanoparticles and multifunctional silanes. JOURNAL OF THE TEXTILE INSTITUTE, 103(4), 385–393. https://doi.org/10.1080/00405000.2011.580540 Li, Y., Lin, Z., Xu, G., Yao, Y., Zhang, S., Toprakci, O., … Zhang, X. (2012). Electrochemical Performance of Carbon Nanofibers Containing an Enhanced Dispersion of Silicon Nanoparticles for Lithium-Ion Batteries by Employing Surfactants. ECS ELECTROCHEMISTRY LETTERS, 1(2), A31–A33. https://doi.org/10.1149/2.002202eel Ji, L., Lin, Z., Alcoutlabi, M., Toprakci, O., Yao, Y., Xu, G., … Zhang, X. (2012). Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC ADVANCES, 2(1), 192–198. https://doi.org/10.1039/c1ra00676b Liang, Y., Cheng, S., Zhao, J., Zhang, C., Sun, S., Zhou, N., … Zhang, X. (2012). High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. JOURNAL OF POWER SOURCES, 213, 10–15. https://doi.org/10.1016/j.jpowsour.2012.04.011 Zhang, S., Li, Y., Xu, G. J., Li, S. L., Lu, Y., Toprakci, O., & Zhang, X. W. (2012). High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. Journal of Power Sources, 213. https://doi.org/https://doi.org/10.1016/j.jpowsour.2012.04.011 Yin, Y. H., Gao, M. X., Pan, H. G., Shen, L. K., Ye, X., Liu, Y. F., … Zhang, X. W. (2012). High-rate capability of LiFePO(4) cathode materials containing Fe(2)P and trace carbon. Journal of Power Sources, 199. https://doi.org/https://doi.org/10.1016/j.jpowsour.2011.10.042 Yin, Y., Gao, M., Pan, H., Shen, L., Ye, X., Liu, Y., … Zhang, X. (2012). High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. JOURNAL OF POWER SOURCES, 199, 256–262. https://doi.org/10.1016/j.jpowsour.2011.10.042 Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., … Wang, C. (2012). In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS NANO, 6(9), 8439–8447. https://doi.org/10.1021/nn303312m Zhang, S., Lu, Y., Xu, G., Li, Y., & Zhang, X. (2012). LiF/Fe/C nanofibres as a high-capacity cathode material for Li-ion batteries. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 45(39). https://doi.org/10.1088/0022-3727/45/39/395301 Toprakci, O., Toprakci, H. A. K., Ji, L., Lin, Z., Gu, R., & Zhang, X. (2012, January 1). LiFePO4 nanoparticles encapsulated in graphene-containing carbon nanofibers for use as energy storage materials. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, Vol. 4. https://doi.org/10.1063/1.3690936 Lithium-Ion Batteries: Amorphous Carbon Coating of Silicon-Carbon Nanofibers as Anode Materials. (2012). 11th Annual NC State Summer Undergraduate Research Symposium. Zhang, S., Li, Y., Xu, G., Li, S., Lu, Y., Topracki, O., & Zhang, X. (2012). Li₂MnSiO₄ Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries. Soft Nanoscience Letters, 02(03), 54–57. https://doi.org/10.4236/snl.2012.23010 Shi, Q., Vitchuli, N., Nowak, J., Jiang, S., Caldwell, J. M., Breidt, F., … McCord, M. (2012). Multifunctional and durable nanofiber-fabric-layered composite for protective application. Journal of Applied Polymer Science, 128(2), 1219–1226. https://doi.org/10.1002/app.38465 Zhang, X. (2012). Nanofiber-based energy-storage materials. Abstracts of Papers of the American Chemical Society, 243. Nanofiber-based energy-storage materials. (2012). Abstracts of Papers of the American Chemical Society. Retrieved from https://publons.com/publon/7178358/ Nawalakhe, R., Vitchuli, N., Shi, Q., Bourham, M. A., Zhang, X., & McCord, M. G. (2012). Novel Atmospheric Plasma Enhanced Silk Fibroin Nanofiber/Gauze Composite Wound Dressings. Journal of Fiber Bioengineering and Informatics, 5(3), 227–242. https://doi.org/10.3993/jfbi09201201 Vitchuli, N., Shi, Q., Nowak, J., Nawalakhe, R., Sieber, M., Bourham, M., … Zhang, X. (2012). Plasma-Electrospinning Hybrid Process and Plasma Pretreatment to Improve Adhesive Properties of Nanofibers on Fabric Surface. PLASMA CHEMISTRY AND PLASMA PROCESSING, 32(2), 275–291. https://doi.org/10.1007/s11090-011-9341-0 Jung, K.-H., Pourdeyhimi, B., & Zhang, X. (2012). Selective Permeation of Cross-Linked Polyelectrolyte and Polyelectrolyte-Filled Nonwoven Membranes. JOURNAL OF APPLIED POLYMER SCIENCE, 123(1), 227–233. https://doi.org/10.1002/app.34453 Ji, L., Toprakci, O., Alcoutlabi, M., Yao, Y., Li, Y., Zhang, S., … Zhang, X. (2012). alpha-Fe2O3 Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES, 4(5), 2672–2679. https://doi.org/10.1021/am300333s Ji, L. W., Toprakci, O., Alcoutlabi, M., Yao, Y. F., Li, Y., Zhang, S., … Zhang, X. W. (2012). alpha-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Applied Materials & Interfaces, 4. Shi, Q., Vitchuli, N., Nowak, J., Lin, Z., Guo, B., McCord, M., … Zhang, X. (2011). Atmospheric Plasma Treatment of Pre-Electrospinning Polymer Solution: A Feasible Method to Improve Electrospinnability. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 49(2), 115–122. https://doi.org/10.1002/polb.22157 Carbon Nanofiber/Manganese Oxide Composites as the Cathode for Li-air Batteries. (2011). NC State Undergraduate Research Summer Symposium. Carbon Nanofiber/Manganese Oxide Composites as the Cathode for Li-air Batteries. (2011). NC State Undergraduate Research Summer Symposium. Shi, Q., Vitchuli, N., Nowak, J., Caldwell, J. M., Breidt, F., Bourham, M., … McCord, M. (2011). Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. EUROPEAN POLYMER JOURNAL, 47(7), 1402–1409. https://doi.org/10.1016/j.eurpolymj.2011.04.002 Lin, Z., Ji, L., Medford, A. J., Shi, Q., Krause, W. E., & Zhang, X. (2011). Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and beta-NADH. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 15(6), 1287–1294. https://doi.org/10.1007/s10008-010-1218-2 Lin, Z., & Zhang, X. (2011). Electrode Catalyst Materials in Direct Methanol Fuel Cells. International Journal of Nano Science, Nano Engineering and Nanotechnology, 3, 1–24. Bonino, C. A., Ji, L., Lin, Z., Toprakci, O., Zhang, X., & Khan, S. A. (2011). Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes. ACS APPLIED MATERIALS & INTERFACES, 3(7), 2534–2542. https://doi.org/10.1021/am2004015 Electrospun Composite Nanofibers for Lithium-Ion Batteries. (2011). NTC Forum. Guo, B., Li, Y., Yao, Y., Lin, Z., Ji, L., Xu, G., … Zhang, X. (2011). Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. SOLID STATE IONICS, 204, 61–65. https://doi.org/10.1016/j.ssi.2011.10.019 Zhang, X., Ji, L., Toprakci, O., Liang, Y., & Alcoutlabi, M. (2011). [Review of Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries]. POLYMER REVIEWS, 51(3), 239–264. https://doi.org/10.1080/15583724.2011.593390 Alcoutlabi, M., Ji, L., Guo, B., Li, S., Li, Y., Zhang, S., … Zhang, X. (2011). Electrospun Nanofibers for Energy Storage. Aatcc Review, 11(6), 45–51. Electrospun Nanofibers for Energy Storage. (2011). Aatcc Review. Retrieved from https://publons.com/publon/7178353/ Alcoutlabi, M., Ji, L. W., Guo, B. K., Li, S. L., Li, Y., Zhang, S., … Zhang, X. W. (2011). Electrospun nanofibers for energy storage. AATCC Review, 11(6), 45–51. Fabrication and Electrochemical Characteristics of Electrospun LiFePO4/Carbon+Graphene Composite Nanofibers for Lithium-Ion Batteries. (2011). 2011 MRS Fall Meeting & Exhibit. Liang, Y., Lin, Z., Qiu, Y., & Zhang, X. (2011). Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. ELECTROCHIMICA ACTA, 56(18), 6474–6480. https://doi.org/10.1016/j.electacta.2011.05.007 Toprakci, O., Ji, L., Lin, Z., Toprakci, H. A. K., & Zhang, X. (2011). Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. JOURNAL OF POWER SOURCES, 196(18), 7692–7699. https://doi.org/10.1016/j.jpowsour.2011.04.031 Yao, Y., Guo, B., Ji, L., Jung, K.-H., Lin, Z., Alcoutlabi, M., … Zhang, X. (2011). Highly proton conductive electrolyte membranes: Fiber-induced long-range ionic channels. ELECTROCHEMISTRY COMMUNICATIONS, 13(9), 1005–1008. https://doi.org/10.1016/j.elecom.2011.06.028 Padbury, R., & Zhang, X. (2011). [Review of Lithium-oxygen batteries-Limiting factors that affect performance]. JOURNAL OF POWER SOURCES, 196(10), 4436–4444. https://doi.org/10.1016/j.jpowsour.2011.01.032 Padbury, R., & Zhang, X. W. (2011). Lithium-oxygen batteries-Limiting factors that affect performance. Journal of Power Sources, 196. MnOx/Carbon Composite Nanofiber Cathodes for Rechargeable Li/Air Batteries. (2011). 2011 MRS Fall Meeting & Exhibit. Vitchuli, N., Shi, Q., Nowak, J., Kay, K., Caldwell, J. M., Breidt, F., … Zhang, X. (2011). Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 12(5). https://doi.org/10.1088/1468-6996/12/5/055004 New Li2MnSiO4/C Nanocomposite Cathode Materials. (2011). 2011 MRS Fall Meeting & Exhibit. Novel Atmospheric Plasma Enhanced Chitosan Nanofiber/Gauze Composite Wound Dressings. (2011). 2011 AATCC Materials Research Poster Competition. Novel Atmospheric Plasma Enhanced Composite Wound Dressings. (2011). NTC Forum. Shi, Q., Vitchuli, N., Nowak, J., Noar, J., Caldwell, J. M., Breidt, F., … Zhang, X. (2011). One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. JOURNAL OF MATERIALS CHEMISTRY, 21(28), 10330–10335. https://doi.org/10.1039/c1jm11492a Liang, Y., Ji, L., Guo, B., Lin, Z., Yao, Y., Li, Y., … Zhang, X. (2011). Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. JOURNAL OF POWER SOURCES, 196(1), 436–441. https://doi.org/10.1016/j.jpowsour.2010.06.088 Ji, L., Lin, Z., Alcoutlabi, M., & Zhang, X. (2011). [Review of Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries]. ENERGY & ENVIRONMENTAL SCIENCE, 4(8), 2682–2699. https://doi.org/10.1039/c0ee00699h Ji, L. W., Lin, Z., Alcoutlabi, M., & Zhang, X. W. (2011). Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 4. Si/C Nanofiber Composite Anodes for New-Generation Rechargeable Lithium-Ion Batteries. (2011). 2011 MRS Fall Meeting & Exhibit. Si/C Nanofiber Composite Anodes for New-Generation Rechargeable Lithium-Ion Batteries. (2011). the Sixth Annual NC State University Graduate Student Research Symposium. Yao, Y., Ji, L., Lin, Z., Li, Y., Alcoutlabi, M., Hamouda, H., & Zhang, X. (2011). Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES, 3(9), 3732–3737. https://doi.org/10.1021/am2009184 Yao, Y., Lin, Z., Li, Y., Alcoutlabi, M., Hamouda, H., & Zhang, X. (2011). Superacidic Electrospun Fiber-Nafion Hybrid Proton Exchange Membranes. ADVANCED ENERGY MATERIALS, 1(6), 1133–1140. https://doi.org/10.1002/aenm.201100435 Yao, Y. F., Lin, Z., Li, Y., Alcoutlabi, M., Hamouda, H., & Zhang, X. W. (2011). Superacidic electrospun fiber-nafion hybrid proton exchange membranes. Advanced Energy Materials, 1. Jung, K.-H., Pourdeyhimi, B., & Zhang, X. (2011). Synthesis and Characterization of Polymer-Filled Nonwoven Membranes. JOURNAL OF APPLIED POLYMER SCIENCE, 119(5), 2568–2575. https://doi.org/10.1002/app.32611 Zinc Oxide/Nylon 6 Electrospun Fibers for Warfare Protective Applications. (2011). 2nd Engineering Day at the NC Legislature. Zinc Oxide/Nylon 6 Electrospun Fibers for Warfare Protective Applications. (2011). 2011 AATCC Materials Research Poster Competition. Shi, Q., Vitchuli, N., Ji, L., Nowak, J., McCord, M., Bourham, M., & Zhang, X. (2010). A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. Journal of Applied Polymer Science, 120(1), 425–433. https://doi.org/10.1002/app.33161 Ji, L., Lin, Z., Guo, B., Medford, A. J., & Zhang, X. (2010). Assembly of Carbon-SnO2 Core-Sheath Composite Nanofibers for Superior Lithium Storage. CHEMISTRY-A EUROPEAN JOURNAL, 16(38), 11543–11548. https://doi.org/10.1002/chem.201001564 Carbon Nanofiber-Supported Platinum and Platinum-Ruthenium Nanoparticles for Use as Anode Electrodes in Direct Methanol Fuel Cells. (2010). Fifth Annual NC State University Graduate Student Research Symposium. Jung, K.-H., Pourdeyhimi, B., & Zhang, X. (2010). Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes. JOURNAL OF MEMBRANE SCIENCE, 362(1-2), 137–142. https://doi.org/10.1016/j.memsci.2010.06.031 Composite Tin Oxide-Carbon Electrospun Nanofibers for Use as Lithium-Ion Battery Anodes. (2010). Nano for the 3rd Millenium 2010. Lin, Z., Woodroof, M. D., Ji, L., Liang, Y., Krause, W., & Zhang, X. (2010). Effect of Platinum Salt Concentration on the Electrospinning of Polyacrylonitrile/Platinum Acetylacetonate Solution. JOURNAL OF APPLIED POLYMER SCIENCE, 116(2), 895–901. https://doi.org/10.1002/app.31616 Lin, Z., Ji, L., Woodroof, M. D., & Zhang, X. (2010). Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. JOURNAL OF POWER SOURCES, 195(15), 5025–5031. https://doi.org/10.1016/j.jpowsour.2010.02.004 Electrodeposition of MnOx onto Carbon Nano-Fibers to Form a Composite for Anode Material in Lithium-Ion Batteries. (2010). 19th Annual NC State Undergraduate Research Spring Symposium. Woodroof, M. D., Lin, Z., & Zhang, X. (2010). Electrodeposition of MnOx onto Carbon Nano-Fibers to Form a Composite for Anode Material in Lithium-Ion Batteries. NC State University Undergraduate Research Journal, 7, 2–7. Electrospun Nanofibers for Protective Applications. (2010). COT Research Open House. Lin, Z., Ji, L., Toprakci, O., Krause, W., & Zhang, X. (2010). Electrospun carbon nanofiber-supported Pt-Pd alloy composites for oxygen reduction. JOURNAL OF MATERIALS RESEARCH, 25(7), 1329–1335. https://doi.org/10.1557/jmr.2010.0163 Vitchuli, N., Shi, Q., Nowak, J., McCord, M., Bourham, M., & Zhang, X. (2010). Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, 116(4), NA-NA. https://doi.org/10.1002/app.31825 Ji, L., & Zhang, X. (2010). Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. ENERGY & ENVIRONMENTAL SCIENCE, 3(1), 124–129. https://doi.org/10.1039/b912188a Toprakci, O., Toprakci, H. A. K., Ji, L., & Zhang, X. (2010). Fabrication and Electrochemical Characteristics of LiFePO(4) Powders for Lithium-Ion Batteries. Kona Powder and Particle Journal, (28), 50–73. Toprakci, O., Toprakci, H. A. K., Ji, L. W., & Zhang, X. (2010). Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-Ion batteries. Kona Powder and Particle Journal, pp. 50–73. https://doi.org/10.14356/kona.2010008 Toprakci, O., Toprakci, H. A. K., Ji, L. W., & Zhang, X. W. (2010). Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-Ion batteries. Kona Powder and Particle Journal. Ji, L., Yao, Y., Toprakci, O., Lin, Z., Liang, Y., Shi, Q., … Zhang, X. (2010). Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. JOURNAL OF POWER SOURCES, 195(7), 2050–2056. https://doi.org/10.1016/j.jpowsour.2009.10.021 Ji, L., Lin, Z., Li, Y., Li, S., Liang, Y., Toprakci, O., … Zhang, X. (2010). Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. POLYMER, 51(19), 4368–4374. https://doi.org/10.1016/j.polymer.2010.07.042 Ji, L. W., Lin, Z., Li, Y., Li, S. L., Liang, Y. Z., Toprakci, O., … Zhang, X. W. (2010). Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. Polymer, 51. Ji, L., Lin, Z., Zhou, R., Shi, Q., Toprakci, O., Medford, A. J., … Zhang, X. (2010). Formation and electrochemical performance of copper/carbon composite nanofibers. ELECTROCHIMICA ACTA, 55(5), 1605–1611. https://doi.org/10.1016/j.electacta.2009.10.033 Metal Oxide Electrodeposited Carbon Nanofibers as Cathode Material in Lithium-Air Battery. (2010). 2010 NC State Summer Undergraduate Research Symposium. Preparation and Durability Improvement of PVDF Nanofiber on Poly-Olefin Membranes. (2010). 2010 NC State Summer Undergraduate Research Symposium. Jung, K.-H., Ji, L., Pourdeyhimi, B., & Zhang, X. (2010). Structure-property relationships of polymer-filled nonwoven membranes for chemical protection applications. JOURNAL OF MEMBRANE SCIENCE, 361(1-2), 63–70. https://doi.org/10.1016/j.memsci.2010.06.010 Lin, Z., Ji, L., Woodroof, M. D., Yao, Y., Krause, W., & Zhang, X. (2010). Synthesis and Electrocatalysis of Carbon Nanofiber-Supported Platinum by 1-AP Functionalization and Polyol Processing Technique. JOURNAL OF PHYSICAL CHEMISTRY C, 114(9), 3791–3797. https://doi.org/10.1021/jp9096138 Lin, Z., Ji, L., Krause, W. E., & Zhang, X. (2010). Synthesis and electrocatalysis of 1-aminopyrene-functionalized carbon nanofiber-supported platinum-ruthenium nanoparticles. JOURNAL OF POWER SOURCES, 195(17), 5520–5526. https://doi.org/10.1016/j.jpowsour.2010.03.059 Lin, Z., Ji, L., & Zhang, X. (2009). A Review of Pt Alloys and Carbon Nanotube/Nanofiber Supported Catalysts for Direct Methanol Fuel Cells. Journal of Energy Storage and Conversion, 1, 101–115. Application of Atmospheric Pressure Plasma on Electrospun Functional Nanofibers. (2009). Chemical and Biological Defense Science and Technology (CBD S&T) Conference. Challenges in Advanced Nanofiber Wound Dressings. (2009). AATCC Innovations in Functional Materials, Sports and Defense Technologies, and Composites/NTC Forum. Design and Synthesis of Dyes for Dye-Sensitized Solar Cells (DSSCs). (2009). 7th Annual Research Open House in the College of Textiles. Roe, B., & Zhang, X. (2009). Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes. TEXTILE RESEARCH JOURNAL, 79(12), 1115–1122. https://doi.org/10.1177/0040517508100184 Effects of Carbon Black and Current Rate on LiFePO4 Cathodes and Lithium-Ion Batteries. (2009). NCSU Summer Research Program Meeting. Lin, Z., Ji, L., & Zhang, X. (2009). Electrocatalytic properties of Pt/carbon composite nanofibers. Electrochimica Acta, 54(27), 7042–7047. https://doi.org/10.1016/j.electacta.2009.07.022 Lin, Z., Ji, L., & Zhang, X. (2009). Electrodeposition of platinum nanoparticles onto carbon nanofibers for electrocatalytic oxidation of methanol. MATERIALS LETTERS, 63(24-25), 2115–2118. https://doi.org/10.1016/j.matlet.2009.07.005 Electrospun Composite Nanofibers for Lithium-Ion Batteries. (2009). AATCC Innovations in Functional Materials, Sports and Defense Technologies, and Composites/NTC Forum. Ji, L., & Zhang, X. (2009). Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. CARBON, 47(14), 3219–3226. https://doi.org/10.1016/j.carbon.2009.07.039 Jung, H.-R., Ju, D.-H., Lee, W.-J., Zhang, X., & Kotek, R. (2009). Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. ELECTROCHIMICA ACTA, 54(13), 3630–3637. https://doi.org/10.1016/j.electacta.2009.01.039 Ji, L., Jung, K.-H., Medford, A. J., & Zhang, X. (2009). Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. JOURNAL OF MATERIALS CHEMISTRY, 19(28), 4992–4997. https://doi.org/10.1039/b903165k Ji, L., Medford, A. J., & Zhang, X. (2009). Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. POLYMER, 50(2), 605–612. https://doi.org/10.1016/j.polymer.2008.11.016 Zhang, X., Ji, L., Lin, Z., & Donghua, U. (2009). Energy-Related Applications of Electrospun Nanofibers. In Proceedings of the Fiber Society 2009 Spring Conference, Vols I and Ii (pp. 959–960). Energy-Related Applications of Electrospun Nanofibers. (2009). PROCEEDINGS OF THE FIBER SOCIETY 2009 SPRING CONFERENCE, VOLS I AND II. Retrieved from https://publons.com/publon/6540076/ Fabrication of Anode Materials for Lithium-Ion Batteries Using Tin (IV) Acetate and the Electrospinning Method. (2009). The 8th Annual NC State University Undergraduate Summer Research Symposium. Ji, L., Medford, A. J., & Zhang, X. (2009). Fabrication of Carbon Fibers with Nanoporous Morphologies from Electrospun Polyacrylonitrile/Poly(L-lactide) Blends. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 47(5), 493–503. https://doi.org/10.1002/polb.21654 Fabrication of Composite Nanofiber Anodes for Rechargeable Lithium-Ion Batteries. (2009). 215th Electrochemical Society Meeting. Fabrication of Composite Nanofiber Anodes for Rechargeable Lithium-Ion Batteries. (2009). 215th Electrochemical Society Meeting. Ji, L., & Zhang, X. (2009). Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. NANOTECHNOLOGY, 20(15). https://doi.org/10.1088/0957-4484/20/15/155705 Ji, L., & Zhang, X. (2009). Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. ELECTROCHEMISTRY COMMUNICATIONS, 11(6), 1146–1149. https://doi.org/10.1016/j.elecom.2009.03.042 Ji, L., & Zhang, X. (2009). Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. ELECTROCHEMISTRY COMMUNICATIONS, 11(3), 684–687. https://doi.org/10.1016/j.elecom.2009.01.018 Ji, L., Lin, Z., Medford, A. J., & Zhang, X. (2009). In-Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance. CHEMISTRY-A EUROPEAN JOURNAL, 15(41), 10718–10722. https://doi.org/10.1002/chem.200902012 Lithium-Ion Battery Pack Design. (2009). Electrifying Trasportation Conference. Ji, L., & Zhang, X. (2009). Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. ELECTROCHEMISTRY COMMUNICATIONS, 11(4), 795–798. https://doi.org/10.1016/j.elecom.2009.01.039 Nanofiber-Based Anode Materials for High-Performance Lithium-Ion Batteries. (2009). 7th Annual Research Open House in the College of Textiles. Nonwovens Containing Polymer Fillers. (2009). Richard D. Gilbert Award Symposium for Students in Polymer Science. Jung, K.-H., Pourdeyhimi, B., & Zhang, X. (2009). POLY 63-Polymer-filled nonwoven membranes for chemical protection. Abstracts of Papers of the American Chemical Society, 238. POLY 63-Polymer-filled nonwoven membranes for chemical protection. (2009). Abstracts of Papers of the American Chemical Society. Retrieved from https://publons.com/publon/7178334/ Polymer-Filled Nonwoven Membranes for Chemical Protection. (2009). 2009 Fall American Chemistry Society National Meeting. Ji, L., Lin, Z., Medford, A. J., & Zhang, X. (2009). Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. CARBON, 47(14), 3346–3354. https://doi.org/10.1016/j.carbon.2009.08.002 Ji, L., Medford, A. J., & Zhang, X. (2009). Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. JOURNAL OF MATERIALS CHEMISTRY, 19(31), 5593–5601. https://doi.org/10.1039/b905755b Zhang, X. (2009). Processing-Structure Relationships of Electrospun Nanofibers. In W. N. Chang (Ed.), Nanofibers: Fabrication, Performance, and Applications (pp. 239–270,). Nova Science. Pt-Carbon Nanofiber Composites for Use as Electrodes in DMFCs. (2009). 215th Electrochemical Society Meeting. Pt-Carbon Nanofiber Composites for Use as Electrodes in DMFCs. (2009). 215th Electrochemical Society Meeting. Synthesis and Characterization of PAMPS-Filled Nylon Nonwoven Membranes. (2009). 237th American Chemical Society National Meeting. Jung, K.-H., Pourdeyhimi, B., & Zhang, X. (2009). Synthesis and characterization of PAMPS-filled nylon nonwoven membranes. Abstracts of Papers of the American Chemical Society, 237. Synthesis and characterization of PAMPS-filled nylon nonwoven membranes. (2009). Abstracts of Papers of the American Chemical Society. Retrieved from https://publons.com/publon/7178320/ Zhang, X., & Pan, Y. (2008). A novel polymer composite with double positive-temperature-coefficient transitions: effect of filler-matrix interface on the resistivity-temperature behavior. POLYMER INTERNATIONAL, 57(5), 770–777. https://doi.org/10.1002/pi.2408 Du, J., Shintay, S., & Zhang, X. (2008). Diameter control of electrospun polyacrylonitrile/iron acetylacetonate ultrafine nanofibers. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 46(15), 1611–1618. https://doi.org/10.1002/polb.21500 Electrospun Composite Nanofibers for Lithium Ion Battery Applications. (2008). NSF Site Visit Meeting. Fabrication of Porous Carbon Nano-Fibers from Electrospun PAN/PLA Blends. (2008). 17th Annual Undergraduate Research Symposium. Fabrication of Porous Carbon Nanofibers through Electrospinning. (2008). Emerging Issues Forum. Zhang, X. (2008). Hydroentangling: A Novel Approach to High-Speed Fabrication of Carbon Nanotube Membranes. ADVANCED MATERIALS, 20(21), 4140-+. https://doi.org/10.1002/adma.200801919 Nonwovens Containing Novel Polymer Fillers. (2008). NSF Site Visit Meeting. Porous Carbon Nanofibers: Preparation and Application as Anode Materials in Rechargeable Lithium-ion Batteries. (2008). ACS Polymer Discussion Group Richard D. Gilbert Award Student Symposium. Ji, L., Saquing, C., Khan, S. A., & Zhang, X. (2008). Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. NANOTECHNOLOGY, 19(8). https://doi.org/10.1088/0957-4484/19/8/085605 Ji, L., Saquing, C., Khan, S. A., & Zhang, X. (2008). Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnology, 19(8). https://doi.org/085605 10.1088/0957-4484/19/8/085605 Preparation of Porous Carbon Nanofibers and Their Application in Lithium-Ion Batteries. (2008). Third Annual NC State University Graduate Student Research Symposium. Zhang, X. (2008). Review: Structure Control of Electrospun Nanofibers and Their Assemblies. International Journal of Electrospun Nanofibers and Applications, 2, 75–102. Du, J., & Zhang, X. (2008). Role of polymer-salt-solvent interactions in the electrospinning of polyacrylonitrile/iron acetylacetonate. JOURNAL OF APPLIED POLYMER SCIENCE, 109(5), 2935–2941. https://doi.org/10.1002/app.28396 Zhang, H., Zhang, X., Shiue, E., & Fedkiw, P. S. (2008). Single-ion conductors for lithium batteries via silica surface modification. JOURNAL OF POWER SOURCES, 177(2), 561–565. https://doi.org/10.1016/j.jpowsour.2007.11.064 Ji, L., & Zhang, X. (2008). Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. MATERIALS LETTERS, 62(14), 2161–2164. https://doi.org/10.1016/j.matlet.2007.11.051 Zhang, X. W., & Pan, Y. (2008). novel polymer composite with double positive-temperature-coefficient transitions: effect of filler-matrix interface on the resistivity-temperature behavior. Polymer International, 57. Electrospinning Parameters and Their Effect on the Fabrication of Catalyst-Loaded Nanofibers for Fuel Cells. (2007). 3rd Annual State of North Carolina Undergraduate Research Symposium, Nonwovens Containing Polymer Fillers. (2007). MemFAST Meeting. Nonwovens Containing Polymer Fillers. (2007). TE/ECE Symposium. Polyacrylonitrile-Based Composite and Carbon Nanofibers for Lithium-Ion Battery Applications. (2007). 212th Electrochemical Society Meeting. Zhang, X. (2007). Porous organic-inorganic hybrid electrolytes for high-temperature proton exchange membrane fuel cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 154(3), B322–B326. https://doi.org/10.1149/1.2429045 Liu, R., Kwok, Y. L., Li, Y., Lao, T. T., & Zhang, X. (2007). Skin pressure profiles and variations with body postural changes beneath medical elastic compression stockings. INTERNATIONAL JOURNAL OF DERMATOLOGY, 46(5), 514–523. https://doi.org/10.1111/j.1365-4632.2007.03175.x Unique Nanofiber Structures for Filtration Applications. (2007). MemFAST Meeting. Zhang, X., & Pan, Y. (2007). novel polymer composite with double positive-temperature-coefficient transitions: Effect of filler-matrix interface on the resistivity-temperature behavior. Polymer International, 57. Geiculescu, O. E., Rajagopal, R., Creager, S. E., DesMarteau, D. D., Zhang, X., & Fedkiw, P. (2006). Transport properties of solid polymer electrolytes prepared from oligomeric fluorosulfonimide lithium salts dissolved in high molecular weight poly(ethylene oxide). JOURNAL OF PHYSICAL CHEMISTRY B, 110(46), 23130–23135. https://doi.org/10.1021/jp062648p Liu, R., Kwok, Y. L., Li, Y., Lao, T. T., & Zhang, X. (2006). effects of graduated compression stockings (GCSs) on cutaneous surface pressure along the path of main superficial veins of lower limb. Wounds (King of Prussia, Pa. : Online), 18(6), 150–157. Zhang, X. (2005). A Brief Overview of Fuel Cells. In X. Zhang (Ed.), Advances in Fuel Cells (pp. 1–11,). Zhang, X. (2005). Advances in fuel cells. Kerala, India: Research Signpost, Zhang, X. (2005). Advances in fuel cells. Liu, R., Kwok, Y. L., Li, Y., Lao, T. T., & Zhang, X. (2005). Graduated compression stockings (GCS): Effects of materials mechanical properties and structures on the skin pressure profiles. Intelligent ambience and well-being : Ambience 05, International Scientific Conference 19-20 September, 2005, Tampere, Finland ; proceedings, 4. Tampere: Tampere University of Technology. Wang, Y. J., Pan, Y., Zhang, X. W., & Tan, K. (2005). Impedance spectra of carbon black filled high-density polyethylene composites. JOURNAL OF APPLIED POLYMER SCIENCE, 98(3), 1344–1350. https://doi.org/10.1002/app.22297 Wang, Y. J., Pan, Y., Zhang, X., & Tan, K. (2005). Impedance spectra of carbon black filled high-density polyethylene composites. Journal of Applied Polymer Science, 98. https://doi.org/https://doi.org/10.1002/app.22297 Zhang, X. W., & Fedkiw, P. S. (2005). Ionic transport and interfacial stability of sulfonate-modified fumed silicas as nanocomposite electrolytes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 152(12), A2413–A2420. https://doi.org/10.1149/1.2109661 Zhang, X. W., & Fedkiw, P. S. (2005). Ionic transport and interfacial stability of sulfonate-modified fumed silicas as nanocomposite electrolytes. Journal of the Electrochemical Society, 152. https://doi.org/https://doi.org/10.1149/1.2109661 Wang, C. S., Zhang, X. W., & Appleby, A. J. (2005). Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 152(1), A205–A209. https://doi.org/10.1149/1.1828952 Wang, C., Zhang, X., & Appleby, A. J. (2005). Solvent-free composite peo-ceramic fiber/mat electrolytes for lithium secondary cells. Journal of the Electrochemical Society, 152. https://doi.org/https://doi.org/10.1149/1.1828952 Li, Y. X., Zhang, X. W., Khan, S. A., & Fedkiw, P. S. (2004). Attenuation of aluminum current collector corrosion in LiTFSI electrolytes using fumed silica nanoparticles. ELECTROCHEMICAL AND SOLID STATE LETTERS, 7(8), A228–A230. https://doi.org/10.1149/1.1756857 Composite Polymer Electrolytes for Lithium and Lithium-Ion Batteries. (2004). U.S. DOE BATT Annual Program Review Meeting. Zhang, X. W., Patil, P. K., Wang, C. S., Appleby, A. J., Little, F. E., & Cocke, D. L. (2004). Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. JOURNAL OF POWER SOURCES, 125(2), 206–213. https://doi.org/10.1016/j.jpowsour.2003.07.019 Zhang, X., Patil, P. K., Wang, C., Appleby, A. J., Little, F. E., & Cocke, D. L. (2004). Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. Journal of Power Sources, 125. https://doi.org/https://doi.org/10.1016/j.jpowsour.2003.07.019 Zhang, X. W., Li, Y. X., Khan, S. A., & Fedkiw, P. S. (2004). Inhibition of lithium dendrites by fumed silica-based composite electrolytes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 151(8), A1257–A1263. https://doi.org/10.1149/1.1767158 Zhang, X. W., Li, Y. X., Khan, S. A., & Fedkiw, P. S. (2004). Inhibition of lithium dendrites by fumed silica-based composite electrolytes. Journal of the Electrochemical Society, 151. https://doi.org/https://doi.org/10.1149/1.1767158 Zhang, X. W., Khan, S. A., & Fedkiw, P. S. (2004). Nanocomposite electrolytes using single-ion conducting fumed silica. ELECTROCHEMICAL AND SOLID STATE LETTERS, 7(10), A361–A364. https://doi.org/10.1149/1.1792267 Zhang, X. W., Khan, S. A., & Fedkiw, P. S. (2004). Nanocomposite electrolytes using single-ion conducting fumed silica. Electrochemical and Solid State Letters, 7. https://doi.org/https://doi.org/10.1149/1.1792267 Zhang, X.-W., Wang, C., & Appleby, A. J. (2004). Novel Composite Solid Polymer Electrolytes. In S. G. Pandalai (Ed.), Recent Research Developments in Solid State Ionics (pp. 95–112,). Transworld Research Network. Zhang, X. W., Wang, C. S., & Appleby, A. J. (2003). Improving low-temperature performance of Li-alloy anodes by optimization of the electrolyte-electrode interface. JOURNAL OF POWER SOURCES, 114(1), 121–126. https://doi.org/10.1016/S0378-7753(02)00544-X Zhang, X., Wang, C., & Appleby, A. J. (2003). Improving low-temperature performance of li-alloy anodes by optimization of the electrolyte-electrode interface. Journal of Power Sources, 114. https://doi.org/https://doi.org/10.1016/s0378-7753(02)00544-x Zhang, X., Wang, C., Appleby, A. J., & Little, F. E. (2002). Characteristics of lithium-ion conducting composite polymer-glass secondary cell electrolytes. Journal of Power Sources, 112. https://doi.org/https://doi.org/10.1016/s0378-7753(02)00365-8 Zhang, X. W., Wang, C. S., Appleby, A. J., & Little, F. E. (2002). Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes. JOURNAL OF POWER SOURCES, 112(1), 209–215. https://doi.org/10.1016/S0378-7753(02)00365-8 Guo, B., Li, Y., Yao, Y., Lin, Z., Ji, L., Xu, G., … Zhang, X. (2002). Composite doped emeraldine-polyethylene oxide-bonded lithium-ion nano-tin anodes with electronic-ionic mixed conduction. SOLID STATE IONICS, 150(3-4), 383–389. https://doi.org/10.1016/S0167-2738(02)00522-2 Zhang, X., Wang, C., Appleby, A. J., & Little, F. E. (2002). Composite doped emeraldine-polyethylene oxide-bonded lithium-ion nano-tin anodes with electronic-ionic mixed conduction. Solid State Ionics, 150. https://doi.org/https://doi.org/10.1016/s0167-2738(02)00522-2 Zhang, X. W., Wang, C. S., Appleby, A. J., & Little, F. E. (2002). Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure. JOURNAL OF POWER SOURCES, 109(1), 136–141. https://doi.org/10.1016/S0378-7753(02)00091-5 Zhang, X., Wang, C., Appleby, A. J., & Little, F. E. (2002). Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure. Journal of Power Sources, 109. https://doi.org/https://doi.org/10.1016/s0378-7753(02)00091-5 Zhang, X., Wang, C., Appleby, A. J., & Little, F. E. (2002). Influence of ionic conductive ceramic fillers on the electrochemical performance of nano-tin anodes in lithium-ion batteries. Selected papers presented at the 11th Internaional Meeting on Lithium Batteries, Monterey, CA, USA, 22-28 June 2002. Amsterdam : Elsevier. Zhang, X., Wang, C., Appleby, A. J., & Little, F. E. (2002). Influence of ionic conductive ceramic fillers on the electrochemical performance of nano-tin anodes in lithium-ion batteries. Liu, J., Pan, Y., & Zhang, X.-W. (2002). PTC Characteristic of Sn-Pb Alloy-Loaded Polymer Composites. Acta Mater. Comp. Sinica, 19, 116–119. Zheng, Q., Zhang, X. W., Pan, Y., & Yi, X. S. (2002). Polystyrene/Sn-Pb alloy blends. I. Dynamic rheological behavior. JOURNAL OF APPLIED POLYMER SCIENCE, 86(12), 3166–3172. https://doi.org/10.1002/app.11353 Zheng, Q., Zhang, X., Pan, Y., & Yi, X. S. (2002). Polystyrene/Sn-Pb alloy blends. I: Dynamic rheological behavior. Journal of Applied Polymer Science, 86. https://doi.org/https://doi.org/10.1002/app.11353 Shi, Q., Vitchuli, N., Nowak, J., Jiang, S., Caldwell, J. M., Breidt, F., … McCord, M. (2002). Polystyrene/Sn-Pb alloy blends. II. Effect of alloy particle surface treatment on dynamic rheological behavior. JOURNAL OF APPLIED POLYMER SCIENCE, 86(12), 3173–3179. https://doi.org/10.1002/app.11352 Zhang, X., Pan, Y., Zheng, Q., & Yi, X. S. (2002). Polystyrene/Sn-Pb alloy blends. II: Effect of alloy particle surface treatment on dynamic rheological behavior. Journal of Applied Polymer Science, 86. https://doi.org/https://doi.org/10.1002/app.11352 Wang, C. S., Zhang, X. W., Appleby, A. J., Chen, X. L., & Little, F. E. (2002). Self-discharge of secondary lithium-ion graphite anodes. JOURNAL OF POWER SOURCES, 112(1), 98–104. https://doi.org/10.1016/S0378-7753(02)00359-2 Wang, C., Zhang, X., Appleby, A. J., Chen, X., & Little, F. E. (2002). Self-discharge of secondary lithium-ion graphite anodes. Journal of Power Sources, 112. https://doi.org/https://doi.org/10.1016/s0378-7753(02)00359-2 Zhang, X. W., Pan, Y., Zheng, Q., & Yi, X. S. (2001). Piezoresistance of conductor filled insulator composites. POLYMER INTERNATIONAL, 50(2), 229–236. https://doi.org/10.1002/1097-0126(200102)50:2<229::AID-PI612>3.0.CO;2-U Zhang, X. W., Pan, Y., Zheng, Q., & Yi, X. S. (2000). A new polymer composite thermistor having double PTC transitions. JOURNAL OF APPLIED POLYMER SCIENCE, 78(2), 424–429. https://doi.org/10.1002/1097-4628(20001010)78:2<424::AID-APP220>3.0.CO;2-6 Zhang, X. W., Pan, Y., Shen, L., Zheng, Q., & Yi, X. S. (2000). A novel low-melting-point alloy-loaded polymer composite. I. Effect of processing temperature on the electrical properties and morphology. JOURNAL OF APPLIED POLYMER SCIENCE, 77(5), 1044–1050. https://doi.org/10.1002/1097-4628(20000801)77:5<1044::AID-APP11>3.0.CO;2-D A novel low-melting-point alloy-loaded polymer composite. I. Effect of processing temperature on the electrical properties and morphology. (2000). Journal of Applied Polymer Science. https://doi.org/10.1002/1097-4628(20000801)77:5<1044::AID-APP11>3.3.CO;2-4 Yi, X. S., Zhang, X. W., Shen, L., & Pan, Y. (2000). Electrical properties of polymer/low-melting-point alloy binary systems. POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 39(5), 829–833. https://doi.org/10.1081/PPT-100101407 Yi, S. X., Zhang, X. S., L., & Pan, Y. (2000). Electrical properties of polymer/low-melting-point alloy binary systems. Polymer-Plastics Technology and Engineering, 39. Zhang, X., Pan, Y., Shen, L., & Yi, X. (2000). Novel low melting point alloy-loaded polymer composite. II. Resistivity-temperature behavior. Journal of Applied Polymer Science, 77(4), 756–763. https://doi.org/10.1002/(sici)1097-4628(20000725)77:4<756::aid-app7>3.0.co;2-y Zhang, X., Pan, Y., Shen, L., & Yi, X. S. (2000). Novel low-melting-point alloy loaded polymer composite. II: Resistivity-temperature behavior. Journal of Applied Polymer Science, 77. https://doi.org/https://doi.org/10.1002/(sici)1097-4628(20000725)77:4%3C756::aid-app7%3E3.0.co;2-y Zhang, X.-W., Pan, Y., Shen, L., & Yi, X.-S. (2000). Startup State Properties and Equivalent Circuit Model of Polyethylene/Carbon Black Conductive Composite. Chinese J. Mater. Res, 14, 23–26. Zhang, X., Pan, Y., Cheng, J. F., & Yi, X. S. (2000). The influence of low-melting-point alloy on the rheological properties of a polystyrene melt. Journal of Materials Science, 35, 4573–4581. https://doi.org/10.1023/A:1004845426786 Zhang, X., Pan, Y., Zheng, Q., & Yi, X. S. (2000). Time dependence of piezoresistance for the conductor filled polymer composites. Journal of Polymer Science. Part B, Polymer Physics, 38. https://doi.org/https://doi.org/10.1002/1099-0488(20001101)38:21%3C2739::aid-polb40%3E3.0.co;2-o Zhang, X. W., Pan, Y., Zheng, Q., & Yi, X. S. (2000). Time dependence of piezoresistance for the conductor-filled polymer composites. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 38(21), 2739–2749. https://doi.org/10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-O Zhang, X., Pan, Y., Cheng, J. F., & Yi, X. S. (2000). influence of low-melting-point alloy on the rheological properties of polymer melts. Journal of Materials Science, 35. https://doi.org/https://doi.org/10.1023/a:1004845426786 Zhang, X., Pan, Y., Zheng, Q., & Yi, S. X. (2000). new polymer composite thermistor having double PTC transition. Journal of Applied Polymer Science, 78. https://doi.org/https://doi.org/10.1002/1097-4628(20001010)78:2%3C424::aid-app220%3E3.0.co;2-6 Zhang, X., Pan, Y., Shen, L., Zheng, Q., & Yi, X. S. (2000). novel low-melting-point alloy loaded polymer composite. I: Effect of processing temperature on the electrical property and morphology. Journal of Applied Polymer Science, 77. https://doi.org/https://doi.org/10.1002/1097-4628(20000801)77:5%3C1044::aid-app11%3E3.0.co;2-d Zhang, X.-W., Shen, L., & Yi, X.-S. (1999). Mechanical Alloying of Polymers.” Mater. Rev, 13, 46–47, Yi, X.-S., Zhang, X.-W., & Shen, L. (1999). Study on the Preparation and Electrical Property of Polymer Matrix Low-Melting-Point Alloy Composite. Academic Periodical Abstracts of China, 5, 107–109. Zhang, X.-W., Pan, Y., Shen, L., & Yi, X.-S. (1998). Power Properties of Polyethylene/Carbon Black Conductive Composite.” Mater. Eng, 12, 25–28,