@article{bagheri_klump_washiyama_breckenridge_kim_guan_khachariya_quinones-garcia_sarkar_rathkanthiwar_et al._2022, title={Doping and compensation in heavily Mg doped Al-rich AlGaN films}, volume={120}, ISSN={["1077-3118"]}, DOI={10.1063/5.0082992}, abstractNote={Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3 were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019 cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.}, number={8}, journal={APPLIED PHYSICS LETTERS}, author={Bagheri, Pegah and Klump, Andrew and Washiyama, Shun and Breckenridge, M. Hayden and Kim, Ji Hyun and Guan, Yan and Khachariya, Dolar and Quinones-Garcia, Cristyan and Sarkar, Biplab and Rathkanthiwar, Shashwat and et al.}, year={2022}, month={Feb} } @article{reddy_mecouch_breckenridge_khachariya_bagheri_kim_guan_mita_moody_tweedie_et al._2022, title={Large-Area, Solar-Blind, Sub-250 nm Detection AlGaN Avalanche Photodiodes Grown on AlN Substrates}, volume={3}, ISSN={["1862-6270"]}, url={https://doi.org/10.1002/pssr.202100619}, DOI={10.1002/pssr.202100619}, abstractNote={Herein, Al‐rich AlGaN‐based avalanche photodiodes (APDs) grown on single crystal AlN substrates high ultraviolet‐C sensitivity for λ < 200 nm are fabricated, while exhibiting blindness to λ > 250 nm. A maximum quantum efficiency of 68% and peak gain of 320 000 are estimated resulting in a figure of merit of ≈220 000 in devices with ϕ = 100 μm. As expected, a decrease in gain with increase in device size is observed and a gain of ≈20 000 is estimated in devices with ϕ = 400 μm. Overall, two orders of magnitude higher performance are observed in APDs on single crystal AlN substrates compared to those on sapphire.}, journal={PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS}, publisher={Wiley}, author={Reddy, Pramod and Mecouch, Will and Breckenridge, M. Hayden and Khachariya, Dolar and Bagheri, Pegah and Kim, Ji Hyun and Guan, Yan and Mita, Seiji and Moody, Baxter and Tweedie, James and et al.}, year={2022}, month={Mar} } @article{breckenridge_tweedie_reddy_guan_bagheri_szymanski_mita_sierakowski_bockowski_collazo_et al._2021, title={High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing}, volume={118}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0038628}, DOI={10.1063/5.0038628}, abstractNote={We demonstrate high p-type conductivity and hole concentrations >1018 cm−3 in Mg-implanted GaN. The implantation was performed at room temperature and by post-implantation annealing at 1 GPa of N2 and in a temperature range of 1200–1400 °C. The high pressure thermodynamically stabilized the GaN surface without the need of a capping layer. We introduce a “diffusion budget,” related to the diffusion length, as a convenient engineering parameter for comparing samples annealed at different temperatures and for different times. Although damage recovery, as measured by XRD, was achieved at relatively low diffusion budgets, these samples did not show p-type conductivity. Further analyses showed heavy compensation by the implantation-induced defects. Higher diffusion budgets resulted in a low Mg ionization energy (∼115 meV) and almost complete Mg activation. For even higher diffusion budgets, we observed significant loss of Mg to the surface and a commensurate reduction in the hole conductivity. High compensation at low diffusion budgets and loss of Mg at high diffusion budgets present a unique challenge for shallow implants. A direct control of the formation of compensating defects arising from the implantation damage may be necessary to achieve both hole conductivity and low Mg diffusion.}, number={2}, journal={APPLIED PHYSICS LETTERS}, publisher={AIP Publishing}, author={Breckenridge, M. Hayden and Tweedie, James and Reddy, Pramod and Guan, Yan and Bagheri, Pegah and Szymanski, Dennis and Mita, Seiji and Sierakowski, Kacper and Bockowski, Michal and Collazo, Ramon and et al.}, year={2021}, month={Jan} } @article{bagheri_reddy_mita_szymanski_kim_guan_khachariya_klump_pavlidis_kirste_et al._2021, title={On the Ge shallow-to-deep level transition in Al-rich AlGaN}, volume={130}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0059037}, DOI={10.1063/5.0059037}, abstractNote={Contrary to the arsenides where donors undergo stable DX transition, we find that Ge in AlGaN does not suffer from the DX transition; instead, it undergoes a shallow donor (30 meV) to deep donor (150 meV) transition at ∼50% Al content in the alloy. This finding is of profound technological importance as it removes fundamental doping limitations in AlGaN and AlN imposed by the presumed DX−1 acceptor state. The charge state of Ge below and above the transition was determined by co-doping with Si, which remains a shallow donor in AlGaN for up to 80% Al. It was found that Ge occupied a donor state with a (0/+) thermodynamic transition for AlGaN alloys below and above the transition. Ge as a shallow donor was completely ionized at room temperature; however, the ionization of the deep donor required elevated temperatures, commensurate with its higher ionization energy. This behavior is not unique to Ge; preliminary findings show that Si and O in AlGaN may behave similarly.}, number={5}, journal={JOURNAL OF APPLIED PHYSICS}, author={Bagheri, Pegah and Reddy, Pramod and Mita, Seiji and Szymanski, Dennis and Kim, Ji Hyun and Guan, Yan and Khachariya, Dolar and Klump, Andrew and Pavlidis, Spyridon and Kirste, Ronny and et al.}, year={2021}, month={Aug} } @article{washiyama_mirrielees_bagheri_baker_kim_guo_kirste_guan_breckenridge_klump_et al._2021, title={Self-compensation in heavily Ge doped AlGaN: A comparison to Si doping}, volume={118}, ISSN={["1077-3118"]}, DOI={10.1063/5.0035957}, abstractNote={Self-compensation in Ge- and Si-doped Al0.3Ga0.7N has been investigated in terms of the formation of III vacancy and donor-vacancy complexes. Both Ge- and Si-doped AlGaN layers showed a compensation knee behavior with impurity compensation (low doping regime), compensation plateau (medium doping regime), and self-compensation (high doping regime). A maximum free carrier concentration of 4–5 × 1019 cm−3 was obtained by Ge doping, whereas Si doping resulted in only half of that value, ∼2 × 1019 cm−3. A DFT calculation with the grand canonical thermodynamics model was developed to support the hypothesis that the difference in self-compensation arises from the difference in the formation energies of the VIII-n•donor complexes relative to their onsite configurations. The model suggested that the VIII-2•donor and VIII-3•donor complexes were responsible for self-compensation for both Ge- and Si-doped AlGaN. However, a lower free carrier concentration in Si-doped samples was due to a high VIII-3•Si concentration, resulting from a lower energy of formation of VIII-3•Si.}, number={4}, journal={APPLIED PHYSICS LETTERS}, author={Washiyama, Shun and Mirrielees, Kelsey J. and Bagheri, Pegah and Baker, Jonathon N. and Kim, Ji-Hyun and Guo, Qiang and Kirste, Ronny and Guan, Yan and Breckenridge, M. Hayden and Klump, Andrew J. and et al.}, year={2021}, month={Jan} } @article{reddy_khachariya_mecouch_breckenridge_bagheri_guan_kim_pavlidis_kirste_mita_et al._2021, title={Study on avalanche breakdown and Poole-Frenkel emission in Al-rich AlGaN grown on single crystal AlN}, volume={119}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0062831}, DOI={10.1063/5.0062831}, abstractNote={We demonstrate that theoretical breakdown fields can be realized in practically dislocation free Al-rich AlGaN p-n junctions grown on AlN single crystal substrates. Furthermore, we also demonstrate a leakage current density in AlGaN that is independent of the device area, indicating a bulk leakage phenomenon and not surface or mesa-edge related. Accordingly, we identified the Poole–Frenkel emission from two types of point-defect traps in AlGaN as the primary source of reverse leakage before breakdown. Mg-doped AlGaN exhibited leakage currents due to a shallow trap at ∼0.16 eV in contrast with leakage currents observed in Si-doped AlGaN due to a deep trap at ∼1.8 eV.}, number={18}, journal={APPLIED PHYSICS LETTERS}, author={Reddy, Pramod and Khachariya, Dolar and Mecouch, Will and Breckenridge, M. Hayden and Bagheri, Pegah and Guan, Yan and Kim, Ji Hyun and Pavlidis, Spyridon and Kirste, Ronny and Mita, Seiji and et al.}, year={2021}, month={Nov} } @article{al-tawhid_shafe_bagheri_guan_reddy_mita_moody_collazo_sitar_ahadi_2021, title={Weak localization and dimensional crossover in compositionally graded AlxGa1-xN}, volume={118}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/5.0042098}, DOI={10.1063/5.0042098}, abstractNote={The interaction between the itinerant carriers, lattice dynamics, and defects is a problem of long-standing fundamental interest for developing quantum theory of transport. Here, we study this interaction in the compositionally and strain-graded AlGaN heterostructures grown on AlN substrates. The results provide direct evidence that a dimensional crossover (2D–3D) occurs with increasing temperature as the dephasing scattering events reduce the coherence length. These heterostructures show a robust polarization-induced 3D electron gas and a metallic-like behavior down to liquid helium temperature. Using magnetoresistance measurements, we analyze the evolution of the interaction between charge carriers, lattice dynamics, and defects as a function of temperature. A negative longitudinal magnetoresistance emerges at low temperatures, in line with the theory of weak localization. A weak localization fit to near zero-field magneto-conductance indicates a coherence length that is larger than the elastic mean free path and film thickness ( l φ > t > l e l), suggesting a 2D weak localization in a three-dimensional electron gas. Our observations allow for a clear and detailed picture of two distinct localization mechanisms that affect carrier transport at low temperature.}, number={8}, journal={APPLIED PHYSICS LETTERS}, publisher={AIP Publishing}, author={Al-Tawhid, Athby and Shafe, Abdullah-Al and Bagheri, Pegah and Guan, Yan and Reddy, Pramod and Mita, Seiji and Moody, Baxter and Collazo, Ramon and Sitar, Zlatko and Ahadi, Kaveh}, year={2021}, month={Feb} } @article{washiyama_guan_mita_collazo_sitar_2020, title={Recovery kinetics in high temperature annealed AlN heteroepitaxial films}, volume={127}, ISSN={["1089-7550"]}, DOI={10.1063/5.0002891}, abstractNote={Based on the experimental dislocation annihilation rates, vacancy core diffusion-controlled dislocation climb was found as a dominant recovery mechanism in high temperature annealing of AlN heteroepitaxial films. Dislocation annihilation mechanisms via dislocation glide (with or without kinks) and vacancy bulk diffusion were found to be less significant. Cross-slip was also ruled out as a possible mechanism as a majority of dislocations in heteroepitaxial AlN films are threading edge dislocations. While dislocation climb through both vacancy bulk and core diffusion could offer a plausible explanation of the recovery process, the activation energy for the vacancy core diffusion-controlled dislocation climb was relatively low (4.3 ± 0.1 eV), as estimated from an Arrhenius plot. The validity of the vacancy core diffusion mechanism was also supported by a large vacancy mean free path (∼240 nm), which was comparable to the sample thickness and thus the average dislocation length. Finally, the experimentally observed dislocation density reduction as a function of the annealing temperature and time was in good agreement with the vacancy core diffusion mechanism.}, number={11}, journal={JOURNAL OF APPLIED PHYSICS}, author={Washiyama, Shun and Guan, Yan and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2020}, month={Mar} } @article{dycus_washiyama_eldred_guan_kirste_mita_sitar_collazo_lebeau_2019, title={The role of transient surface morphology on composition control in AlGaN layers and wells}, volume={114}, ISSN={["1077-3118"]}, DOI={10.1063/1.5063933}, abstractNote={The mechanisms governing “compositional pulling” during the growth of AlxGa1−xN wells are investigated. Gallium-rich AlxGa1−xN wells grown on high dislocation density AlN/sapphire templates exhibit asymmetric and diffuse composition profiles, while those grown on low dislocation density native AlN substrates do not. Furthermore, strain in all AlxGa1−xN wells is found to be pseudomorphic, ruling it out as the dominating driving force. Rather, the high threading dislocation density of the AlN template is considered to play the defining role. We propose that a transient surface morphology is introduced during dislocation mediated spiral growth, which, in conjunction with process supersaturation, determines the Ga incorporation. These findings provide insights into compositional pulling in high Ga content AlxGa1−xN grown on AlN and provide a route to grow thicker wells with very abrupt interfaces on native AlN substrates.The mechanisms governing “compositional pulling” during the growth of AlxGa1−xN wells are investigated. Gallium-rich AlxGa1−xN wells grown on high dislocation density AlN/sapphire templates exhibit asymmetric and diffuse composition profiles, while those grown on low dislocation density native AlN substrates do not. Furthermore, strain in all AlxGa1−xN wells is found to be pseudomorphic, ruling it out as the dominating driving force. Rather, the high threading dislocation density of the AlN template is considered to play the defining role. We propose that a transient surface morphology is introduced during dislocation mediated spiral growth, which, in conjunction with process supersaturation, determines the Ga incorporation. These findings provide insights into compositional pulling in high Ga content AlxGa1−xN grown on AlN and provide a route to grow thicker wells with very abrupt interfaces on native AlN substrates.}, number={3}, journal={APPLIED PHYSICS LETTERS}, author={Dycus, J. Houston and Washiyama, Shun and Eldred, Tim B. and Guan, Yan and Kirste, Ronny and Mita, Seiji and Sitar, Zlatko and Collazo, Ramon and LeBeau, James M.}, year={2019}, month={Jan} }