@article{gilfillan_vilander_pan_goh_o'flaherty_feng_fox_lang_greenberg_abdo_et al._2023, title={Lactobacillus acidophilus Expressing Murine Rotavirus VP8 and Mucosal Adjuvants Induce Virus-Specific Immune Responses}, volume={11}, ISSN={["2076-393X"]}, url={https://www.mdpi.com/2076-393X/11/12/1774}, DOI={10.3390/vaccines11121774}, abstractNote={Rotavirus diarrhea-associated illness remains a major cause of global death in children under five, attributable in part to discrepancies in vaccine performance between high- and low-middle-income countries. Next-generation probiotic vaccines could help bridge this efficacy gap. We developed a novel recombinant Lactobacillus acidophilus (rLA) vaccine expressing rotavirus antigens of the VP8* domain from the rotavirus EDIM VP4 capsid protein along with the adjuvants FimH and FliC. The upp-based counterselective gene-replacement system was used to chromosomally integrate FimH, VP8Pep (10 amino acid epitope), and VP8-1 (206 amino acid protein) into the L. acidophilus genome, with FliC expressed from a plasmid. VP8 antigen and adjuvant expression were confirmed by flow cytometry and Western blot. Rotavirus naïve adult BALB/cJ mice were orally immunized followed by murine rotavirus strain ECWT viral challenge. Antirotavirus serum IgG and antigen-specific antibody-secreting cell responses were detected in rLA-vaccinated mice. A day after the oral rotavirus challenge, fecal antigen shedding was significantly decreased in the rLA group. These results indicate that novel rLA constructs expressing VP8 can be successfully constructed and used to generate modest homotypic protection from rotavirus challenge in an adult murine model, indicating the potential for a probiotic next-generation vaccine construct against human rotavirus.}, number={12}, journal={VACCINES}, author={Gilfillan, Darby and Vilander, Allison C. and Pan, Meichen and Goh, Yong Jun and O'Flaherty, Sarah and Feng, Ningguo and Fox, Bridget E. and Lang, Callie and Greenberg, Harry B. and Abdo, Zaid and et al.}, year={2023}, month={Dec} } @article{pan_morovic_hidalgo-cantabrana_roberts_walden_goh_barrangou_2022, title={Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium}, volume={119}, ISSN={["1091-6490"]}, url={https://doi.org/10.1073/pnas.2205068119}, DOI={10.1073/pnas.2205068119}, abstractNote={Bifidobacteriumis a commensal bacterial genus ubiquitous in the human gastrointestinal tract, which is associated with a range of health benefits. The advent of CRISPR-based genome editing technologies provides opportunities to investigate the genetics of important bacteria and transcend the lack of genetic tools in bifidobacteria to study the basis for their health-promoting attributes. Here, we repurpose the endogenous type I-G CRISPR-Cas system and adopt an exogenous CRISPR base editor for genome engineering inB. animalissubsp.lactis,demonstrating that both genomic and epigenetic contexts drive editing outcomes across strains. We reprogrammed the endogenous type I-G system to screen for naturally occurring large deletions up to 27 kb and to generate a 500-bp deletion intetWto abolish tetracycline resistance. A CRISPR-cytosine base editor was optimized to install C•G-to-T•A amber mutations to resensitize multipleB. lactisstrains to tetracycline. Remarkably, we uncovered epigenetic patterns that are distributed unevenly amongB. lactisstrains, despite their genomic homogeneity, that may contribute to editing efficiency variability. Insights were also expanded toBifidobacterium longumsubsp.infantisto emphasize the broad relevance of these findings. This study highlights the need to develop individualized CRISPR-based genome engineering approaches for distinct bacterial strains and opens avenues for engineering of next generation probiotics.}, number={30}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Pan, Meichen and Morovic, Wesley and Hidalgo-Cantabrana, Claudio and Roberts, Avery and Walden, Kimberly K. O. and Goh, Yong Jun and Barrangou, Rodolphe}, year={2022}, month={Jul} } @article{goh_barrangou_klaenhammer_2021, title={In Vivo Transcriptome of Lactobacillus acidophilus and Colonization Impact on Murine Host Intestinal Gene Expression}, volume={12}, ISSN={["2150-7511"]}, url={https://doi.org/10.1128/mBio.03399-20}, DOI={10.1128/mBio.03399-20}, abstractNote={ To date, our basis for comprehending the probiotic mechanisms of Lactobacillus acidophilus , one of the most widely consumed probiotic microbes, was largely limited to in vitro functional genomic studies. Using a germfree murine colonization model, in vivo -based transcriptional studies provided the first view of how L. acidophilus survives in the mammalian gut environment, including gene expression patterns linked to survival, efficient nutrient acquisition, stress adaptation, and host interactions. }, number={1}, journal={MBIO}, publisher={American Society for Microbiology}, author={Goh, Yong Jun and Barrangou, Rodolphe and Klaenhammer, Todd R.}, editor={Huffnagle, Gary B.Editor}, year={2021} } @article{goh_barrangou_2021, title={Portable CRISPR-Cas9(N) System for Flexible Genome Engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei}, volume={87}, ISSN={["1098-5336"]}, url={https://doi.org/10.1128/AEM.02669-20}, DOI={10.1128/AEM.02669-20}, abstractNote={ This work describes the development of a lactobacillus CRISPR-based editing system for genome manipulations in three Lactobacillus species belonging to the lactic acid bacteria (LAB), which are commonly known for their long history of use in food fermentations and as indigenous members of healthy microbiotas and for their emerging roles in human and animal commercial health-promoting applications. We exploited the established CRISPR-SpyCas9 nickase for flexible and precise genome editing applications in Lactobacillus acidophilus and further demonstrated the efficacy of this universal system in two distantly related Lactobacillus species. }, number={6}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, publisher={American Society for Microbiology}, author={Goh, Yong Jun and Barrangou, Rodolphe}, editor={Dudley, Edward G.Editor}, year={2021}, month={Mar} } @article{andersen_moller_poulsen_pichler_svensson_lo leggio_goh_abou hachem_2020, title={An 1,4-alpha-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus}, volume={86}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.00661-20}, abstractNote={The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.}, number={15}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Andersen, Susan and Moller, Marie Sofie and Poulsen, Jens-Christian N. and Pichler, Michael J. and Svensson, Birte and Lo Leggio, Leila and Goh, Yong Jun and Abou Hachem, Maher}, year={2020}, month={Aug} } @article{pan_hidalgo-cantabrana_goh_sanozky-dawes_barrangou_2020, title={Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts}, volume={10}, ISSN={["1664-302X"]}, DOI={10.3389/fmicb.2019.03146}, abstractNote={Lactobacillus crispatus and Lactobacillus gasseri are two of the main Lactobacillus species found in the healthy vaginal microbiome and have also previously been identified and isolated from the human gastrointestinal (GI) tract. These two ecological niches are fundamentally different, notably with regards to the epithelial cell type, nutrient availability, environmental conditions, pH, and microbiome composition. Given the dramatic differences between these two environments, we characterized strains within the same Lactobacillus species isolated from either the vaginal or intestinal tract to assess whether they are phenotypically and genetically different. We compared the genomes of the Lactobacillus strains selected in this study for genetic features of interest, and performed a series of comparative phenotypic assays including small intestinal juice and acid resistance, carbohydrate fermentation profiles, lactic acid production, and host interaction with intestinal Caco-2 and vaginal VK2 cell lines. We also developed a simulated vaginal fluid (SVF) to study bacterial growth in a proxy vaginal environment and conducted differential transcriptomic analysis between SVF and standard laboratory MRS medium. Overall, our results show that although strain-specific variation is observed, some phenotypic differences seem associated with the isolation source. We encourage future probiotic formulation to include isolation source and take into consideration genetic and phenotypic features for use at various body sites.}, journal={FRONTIERS IN MICROBIOLOGY}, author={Pan, Meichen and Hidalgo-Cantabrana, Claudio and Goh, Yong Jun and Sanozky-Dawes, Rosemary and Barrangou, Rodolphe}, year={2020}, month={Jan} } @article{klotz_goh_o'flaherty_johnson_barrangou_2020, title={Deletion of S-Layer Associated Ig-Like Domain Protein Disrupts the Lactobacillus acidophilus Cell Surface}, volume={11}, ISSN={["1664-302X"]}, DOI={10.3389/fmicb.2020.00345}, abstractNote={Bacterial surface-layers (S-layers) are crystalline arrays of repeating proteinaceous subunits that coat the exterior of many cell envelopes. S-layers have demonstrated diverse functions in growth and survival, maintenance of cell integrity, and mediation of host interactions. Additionally, S-layers can act as scaffolds for the outward display of auxiliary proteins and glycoproteins. These non-covalently bound S-layer associated proteins (SLAPs) have characterized roles in cell division, adherence to intestinal cells, and modulation of the host immune response. Recently, IgdA (LBA0695), a Lactobacillus acidophilus SLAP that possesses a Group 3 immunoglobulin (Ig)-like domain and GW (Gly-Tryp) dipeptide surface anchor, was recognized for its high conservation among S-layer-forming lactobacilli, constitutive expression, and surface localization. These findings prompted its selection for examination within the present study. Although IgdA and corresponding orthologs were shown to be unique to host-adapted lactobacilli, the Ig domain itself was specific to vertebrate-adapted species suggesting a role in vertebrate adaptation. Using a counterselective gene replacement system, igdA was deleted from the L. acidophilus NCFM chromosome. The resultant mutant, NCK2532, exhibited a visibly disrupted cell surface which likely contributed to its higher salt sensitivity, severely reduced adhesive capacity, and altered immunogenicity profile. Transcriptomic analyses revealed the induction of several stress response genes and secondary surface proteins. Due to the broad impact of IgdA on the cellular physiology and probiotic attributes of L. acidophilus, identification of similar proteins in alternative bacterial species may help pinpoint next-generation host-adapted probiotic candidates.}, journal={FRONTIERS IN MICROBIOLOGY}, author={Klotz, Courtney and Goh, Yong Jun and O'Flaherty, Sarah and Johnson, Brant and Barrangou, Rodolphe}, year={2020}, month={Mar} } @misc{hidalgo-cantabrana_goh_barrangou_2019, title={Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria}, volume={431}, ISSN={["1089-8638"]}, DOI={10.1016/j.jmb.2018.09.013}, abstractNote={CRISPR–Cas systems constitute the adaptive immune system of bacteria and archaea, as a sequence-specific nucleic acid targeting defense mechanism. The sequence-specific recognition and cleavage of Cas effector complexes has been harnessed to developed CRISPR-based technologies and drive the genome editing revolution underway, due to their efficacy, efficiency, and ease of implementation in a broad range of organisms. CRISPR-based technologies offer a wide variety of opportunities in genome remodeling and transcriptional regulation, opening new avenues for therapeutic and biotechnological applications. To repurpose CRISPR–Cas systems for these applications, the various elements of the system need to be first identified and functionally characterized in their native host. Bioinformatic tools are first used to identify putative CRISPR arrays and their associated genes, followed by a comprehensive characterization of the CRISPR–Cas system, encompassing predictions for guide and target sequences. Subsequently, interference assays and transcriptomic analyses should be performed to probe the functionality of the CRISPR–Cas system. Once an endogenous CRISPR–Cas system is characterized as functional, they can be readily repurposed by delivering an engineered synthetic CRISPR array or a small RNA guide for targeted gene manipulation. Alternatively, developing a plasmid-based system for heterologous expression of the necessary CRISPR components can enable exploitation in other organisms. Altogether, there is a wide diversity of native CRISPR–Cas systems in many bacteria and most archaea that await functional characterization and repurposing for genome editing applications in prokaryotes.}, number={1}, journal={JOURNAL OF MOLECULAR BIOLOGY}, publisher={Elsevier BV}, author={Hidalgo-Cantabrana, Claudio and Goh, Yong Jun and Barrangou, Rodolphe}, year={2019}, month={Jan}, pages={21–33} } @misc{goh_barrangou_2019, title={Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli}, volume={56}, ISSN={["1879-0429"]}, url={https://doi.org/10.1016/j.copbio.2018.11.009}, DOI={10.1016/j.copbio.2018.11.009}, abstractNote={Our evolving understanding on the mechanisms underlying the health-promoting attributes of probiotic lactobacilli, together with an expanding genome editing toolbox have made this genus an ideal chassis for the development of living therapeutics. The rising adoption of CRISPR-based technologies for prokaryotic engineering has demonstrated precise, efficient and scalable genome editing and tunable transcriptional regulation that can be translated into next-generation development of probiotic lactobacilli with enhanced robustness and designer functionalities. Here, we discuss how these tools in conjunction with the naturally abundant and diverse native CRISPR-Cas systems can be harnessed for Lactobacillus cell surface engineering and the delivery of biotherapeutics.}, journal={CURRENT OPINION IN BIOTECHNOLOGY}, publisher={Elsevier BV}, author={Goh, Yong Jun and Barrangou, Rodolphe}, year={2019}, month={Apr}, pages={163–171} } @article{canez_selle_goh_barrangou_2019, title={Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus}, volume={366}, ISSN={["1574-6968"]}, url={https://doi.org/10.1093/femsle/fnz105}, DOI={10.1093/femsle/fnz105}, abstractNote={ABSTRACT}, number={9}, journal={FEMS MICROBIOLOGY LETTERS}, publisher={Oxford University Press (OUP)}, author={Canez, Cassandra and Selle, Kurt and Goh, Yong Jun and Barrangou, Rodolphe}, year={2019}, month={May} } @article{stout_sanozky-dawes_goh_crawley_klaenhammer_barrangou_2018, title={Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri}, volume={164}, ISSN={["1465-2080"]}, DOI={10.1099/mic.0.000689}, abstractNote={Lactobacillus gasseri is a human commensal which carries CRISPR-Cas, an adaptive immune system that protects the cell from invasive mobile genetic elements (MGEs). However, MGEs occasionally escape CRISPR targeting due to DNA mutations that occur in sequences involved in CRISPR interference. To better understand CRISPR escape processes, a plasmid interference assay was used to screen for mutants that escape CRISPR-Cas targeting. Plasmids containing a target sequence and a protospacer adjacent motif (PAM) were transformed for targeting by the native CRISPR-Cas system. Although the primary outcome of the assay was efficient interference, a small proportion of the transformed population overcame targeting. Mutants containing plasmids that had escaped were recovered to investigate the genetic routes of escape and their relative frequencies. Deletion of the targeting spacer in the native CRISPR array was the dominant pattern of escape, accounting for 52-70 % of the mutants from two L. gasseri strains. We repeatedly observed internal deletions in the chromosomal CRISPR array, characterized by polarized excisions from the leader end that spanned 1-15 spacers, and systematically included the leader-proximal targeting spacer. This study shows that deletions of spacers within CRISPR arrays constitute a key escape mechanism to evade CRISPR targeting, while preserving the functionality of the CRISPR-Cas system. This mechanism enables cells to maintain an active immune system, but allows the uptake of potentially beneficial plasmids. Our study revealed the co-occurrence of other genomic mutations associated with various phenotypes, showing how this selection process uncovers population diversification.}, number={9}, journal={MICROBIOLOGY-SGM}, publisher={Microbiology Society}, author={Stout, Emily A. and Sanozky-Dawes, Rosemary and Goh, Yong Jun and Crawley, Alexandra B. and Klaenhammer, Todd R. and Barrangou, Rodolphe}, year={2018}, month={Sep}, pages={1098–1111} } @article{moller_goh_rasmussen_cypryk_celebioglu_klaenhammer_svensson_abou hachem_2017, title={An Extracellular Cell-Attached Pullulanase Confers Branched alpha-Glucan Utilization in Human Gut Lactobacillus acidophilus}, volume={83}, ISSN={["1098-5336"]}, DOI={10.1128/aem.00402-17}, abstractNote={ABSTRACT}, number={12}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Moller, Marie S. and Goh, Yong Jun and Rasmussen, Kasper Bowig and Cypryk, Wojciech and Celebioglu, Hasan Ufuk and Klaenhammer, Todd R. and Svensson, Birte and Abou Hachem, Maher}, year={2017}, month={Jun} } @article{selle_goh_johnson_sarah_andersen_barrangou_klaenhammer_2017, title={Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus}, volume={8}, DOI={10.3389/fmicb.2017.00553}, abstractNote={Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.}, journal={Frontiers in Microbiology}, publisher={Frontiers Media SA}, author={Selle, Kurt and Goh, Yong J. and Johnson, Brant R. and Sarah, O’Flaherty and Andersen, Joakim M. and Barrangou, Rodolphe and Klaenhammer, Todd R.}, year={2017}, month={Apr} } @article{klotz_o'flaherty_goh_barrangou_2017, title={Investigating the Effect of Growth Phase on the Surface-Layer Associated Proteome of Lactobacillus acidophilus Using Quantitative Proteomics}, volume={8}, ISSN={["1664-302X"]}, DOI={10.3389/fmicb.2017.02174}, abstractNote={Bacterial surface-layers (S-layers) are semi-porous crystalline arrays that self-assemble to form the outermost layer of some cell envelopes. S-layers have been shown to act as scaffolding structures for the display of auxiliary proteins externally. These S-layer associated proteins have recently gained attention in probiotics due to their direct physical contact with the intestinal mucosa and potential role in cell proliferation, adhesion, and immunomodulation. A number of studies have attempted to catalog the S-layer associated proteome of Lactobacillus acidophilus NCFM under a single condition. However, due to the versatility of the cell surface, we chose to employ a multiplexing-based approach with the intention of accurately contrasting multiple conditions. In this study, a previously described lithium chloride isolation protocol was used to release proteins bound to the L. acidophilus S-layer during logarithmic and early stationary growth phases. Protein quantification values were obtained via TMT (tandem mass tag) labeling combined with a triple-stage mass spectrometry (MS3) method. Results showed significant growth stage-dependent alterations to the surface-associated proteome while simultaneously highlighting the sensitivity and reproducibility of the technology. Thus, this study establishes a framework for quantifying condition-dependent changes to cell surface proteins that can easily be applied to other S-layer forming bacteria.}, journal={FRONTIERS IN MICROBIOLOGY}, publisher={Frontiers Media SA}, author={Klotz, Courtney and O'Flaherty, Sarah and Goh, Yong Jun and Barrangou, Rodolphe}, year={2017}, month={Nov} } @article{theilmann_goh_nielsen_klaenhammer_barrangou_abou hachem_2017, title={Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals}, volume={8}, ISSN={["2150-7511"]}, url={https://doi.org/10.1128/mBio.01421-17}, DOI={10.1128/mbio.01421-17}, abstractNote={ABSTRACT}, number={6}, journal={MBIO}, publisher={American Society for Microbiology}, author={Theilmann, Mia C. and Goh, Yong Jun and Nielsen, Kristian Fog and Klaenhammer, Todd R. and Barrangou, Rodolphe and Abou Hachem, Maher}, editor={Martens, Eric and McFall-Ngai, Margaret J.Editors}, year={2017} } @article{johnson_o'flaherty_goh_carroll_barrangou_klaenhammer_2017, title={The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM}, volume={8}, ISSN={["1664-302X"]}, DOI={10.3389/fmicb.2017.01185}, abstractNote={Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components.}, journal={FRONTIERS IN MICROBIOLOGY}, publisher={Frontiers Media SA}, author={Johnson, Brant R. and O'Flaherty, Sarah and Goh, Yong Jun and Carroll, Ian and Barrangou, Rodolphe and Klaenhammer, Todd R.}, year={2017}, month={Jun} } @article{celebioglu_ejby_majumder_kobler_goh_thorsen_schmidt_o'flaherty_abou hachem_lahtinen_et al._2016, title={Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic}, volume={16}, ISSN={["1615-9861"]}, DOI={10.1002/pmic.201500212}, abstractNote={Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT‐29 cells increased three‐fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D‐DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress‐related protein increasing in a range of +2.1 − +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to −2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α‐galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β‐galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host.}, number={9}, journal={PROTEOMICS}, author={Celebioglu, Hasan Ufuk and Ejby, Morten and Majumder, Avishek and Kobler, Carsten and Goh, Yong Jun and Thorsen, Kristian and Schmidt, Bjarne and O'Flaherty, Sarah and Abou Hachem, Maher and Lahtinen, Sampo J. and et al.}, year={2016}, month={May}, pages={1361–1375} } @misc{hutkins_krumbeck_bindels_cani_fahey_goh_hamaker_martens_mills_rastal_et al._2016, title={Prebiotics: why definitions matter}, volume={37}, ISSN={["1879-0429"]}, DOI={10.1016/j.copbio.2015.09.001}, abstractNote={The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term.}, journal={CURRENT OPINION IN BIOTECHNOLOGY}, author={Hutkins, Robert W. and Krumbeck, Janina A. and Bindels, Laure B. and Cani, Patrice D. and Fahey, George, Jr. and Goh, Yong Jun and Hamaker, Bruce and Martens, Eric C. and Mills, David A. and Rastal, Robert A. and et al.}, year={2016}, month={Feb}, pages={1–7} } @article{goh_klaenhammer_2015, title={Genetic Mechanisms of Prebiotic Oligosaccharide Metabolism in Probiotic Microbes}, volume={6}, ISSN={["1941-1421"]}, DOI={10.1146/annurev-food-022814-015706}, abstractNote={ Recent insights into the relationship between the human gut and its resident microbiota have revolutionized our appreciation of this symbiosis and its impact on health and disease development. Accumulating evidence on probiotic and prebiotic interventions has demonstrated promising effects on promoting gastrointestinal health by modulating the microbiota toward the enrichment of beneficial microorganisms. However, the precise mechanisms of how prebiotic nondigestible oligosaccharides are metabolized by these beneficial microbes in vivo remain largely unknown. Genome sequencing of probiotic lactobacilli and bifidobacteria has revealed versatile carbohydrate metabolic gene repertoires dedicated to the catabolism of various oligosaccharides. In this review, we highlight recent findings on the genetic mechanisms involved in the utilization of prebiotic fructooligosaccharides, β-galactooligosaccharides, human milk oligosaccharides, and other prebiotic candidates by these probiotic microbes. }, journal={ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 6}, author={Goh, Yong Jun and Klaenhammer, Todd R.}, year={2015}, pages={137–156} } @article{lightfoot_selle_yang_goh_sahay_zadeh_owen_colliou_li_johannssen_et al._2015, title={SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis}, volume={34}, ISSN={["1460-2075"]}, DOI={10.15252/embj.201490296}, abstractNote={Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C‐type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3‐induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD.}, number={7}, journal={EMBO JOURNAL}, author={Lightfoot, Yaima L. and Selle, Kurt and Yang, Tao and Goh, Yong Jun and Sahay, Bikash and Zadeh, Mojgan and Owen, Jennifer L. and Colliou, Natacha and Li, Eric and Johannssen, Timo and et al.}, year={2015}, month={Apr}, pages={881–895} } @article{call_goh_selle_klaenhammer_o'flaherty_2015, title={Sortase-deficient lactobacilli: effect on immunomodulation and gut retention}, volume={161}, ISSN={["1350-0872"]}, DOI={10.1099/mic.0.000007}, abstractNote={Surface proteins of probiotic microbes, including Lactobacillus acidophilus and Lactobacillus gasseri, are believed to promote retention in the gut and mediate host-bacterial communications. Sortase, an enzyme that covalently couples a subset of extracellular proteins containing an LPXTG motif to the cell surface, is of particular interest in characterizing bacterial adherence and communication with the mucosal immune system. A sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825). Additionally, eight and six intact sortase-dependent proteins were predicted in L. acidophilus and L. gasseri, respectively. Due to the role of sortase in coupling these proteins to the cell wall, ΔsrtA deletion mutants of L. acidophilus and L. gasseri were created using the upp-based counterselective gene replacement system. Inactivation of sortase did not cause significant alteration in growth or survival in simulated gastrointestinal juices. Meanwhile, both ΔsrtA mutants showed decreased adhesion to porcine mucin in vitro. Murine dendritic cells exposed to the ΔsrtA mutant of L. acidophilus or L. gasseri induced lower levels of pro-inflammatory cytokines TNF-α and IL-12, respectively, compared with the parent strains. In vivo co-colonization of the L. acidophilus ΔsrtA mutant and its parent strain in germ-free 129S6/SvEv mice resulted in a significant one-log reduction of the ΔsrtA mutant population. Additionally, a similar reduction of the ΔsrtA mutant was observed in the caecum. This study shows for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract.}, journal={MICROBIOLOGY-SGM}, author={Call, Emma K. and Goh, Yong Jun and Selle, Kurt and Klaenhammer, Todd R. and O'Flaherty, Sarah}, year={2015}, month={Feb}, pages={311–321} } @misc{goh_klaenhammer_2014, title={Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention}, volume={13}, ISSN={["1475-2859"]}, DOI={10.1186/s12934-014-0094-3}, abstractNote={In prokaryotic species equipped with glycogen metabolism machinery, the co-regulation of glycogen biosynthesis and degradation has been associated with the synthesis of energy storage compounds and various crucial physiological functions, including global cellular processes such as carbon and nitrogen metabolism, energy sensing and production, stress response and cell-cell communication. In addition, the glycogen metabolic pathway was proposed to serve as a carbon capacitor that regulates downstream carbon fluxes, and in some microorganisms the ability to synthesize intracellular glycogen has been implicated in host persistence. Among lactobacilli, complete glycogen metabolic pathway genes are present only in select species predominantly associated with mammalian hosts or natural environments. This observation highlights the potential involvement of glycogen biosynthesis in probiotic activities and persistence of intestinal lactobacilli in the human gastrointestinal tract. In this review, we summarize recent findings on (i) the presence and potential ecological distribution of glycogen metabolic pathways among lactobacilli, (ii) influence of carbon substrates and growth phases on glycogen metabolic gene expression and glycogen accumulation in L. acidophilus, and (iii) the involvement of glycogen metabolism on growth, sugar utilization and bile tolerance. Our present in vivo studies established the significance of glycogen biosynthesis on the competitive retention of L. acidophilus in the mouse intestinal tract, demonstrating for the first time that the ability to synthesize intracellular glycogen contributes to gut fitness and retention among probiotic microorganisms.}, journal={MICROBIAL CELL FACTORIES}, author={Goh, Yong Jun and Klaenhammer, Todd R.}, year={2014}, month={Nov} } @article{moller_goh_viborg_andersen_klaenhammer_svensson_abou hachem_2014, title={Recent insight in alpha-glucan metabolism in probiotic bacteria}, volume={69}, ISSN={["1336-9563"]}, DOI={10.2478/s11756-014-0367-7}, abstractNote={α-Glucans from bacterial exo-polysaccharides or diet, e.g., resistant starch, legumes and honey are abundant in the human gut and fermentation of resistant fractions of these α-glucans by probiotic lactobacilli and bifidobacteria impacts human health positively. The ability to degrade polymeric α-glucans is confined to few strains encoding extracellular amylolytic activities of glycoside hydrolase (GH) family 13. Debranching pullulanases of the subfamily GH13_14 are the most common extracellular GH13 enzymes in lactobacilli, whereas corresponding enzymes are mainly α-amylases and amylopullulanases in bifidobacteria. Extracellular GH13 enzymes from both genera are frequently modular and possess starch binding domains, which are important for efficient catalysis and possibly to mediate attachment of cells to starch granules. α-1,6-Linked glucans, e.g., isomalto-oligosaccharides are potential prebiotics. The enzymes targeting these glucans are the most abundant intracellular GHs in bifidobacteria and lactobacilli. A phosphoenolpyruvate-dependent phosphotransferase system and a GH4 phospho-α-glucosidase are likely involved in metabolism of isomaltose and isomaltulose in probiotic lactobacilli based on transcriptional analysis. This specificity within GH4 is unique for lactobacilli, whereas canonical GH13 31 α-1,6-glucosidases active on longer α-1,6-gluco-oligosaccharides are ubiquitous in bifidobacteria and lactobacilli. Malto-oligosaccharide utilization operons encode more complex, diverse, and less biochemically understood activities in bifidobacteria compared to lactobacilli, where important members have been recently described at the molecular level. This review presents some aspects of α-glucan metabolism in probiotic bacteria and highlights vague issues that merit experimental effort, especially oligosaccharide uptake and the functionally unassigned enzymes, featuring in this important facet of glycan turnover by members of the gut microbiota.}, number={6}, journal={BIOLOGIA}, author={Moller, Marie S. and Goh, Yong Jun and Viborg, Alexander H. and Andersen, Joakim M. and Klaenhammer, Todd R. and Svensson, Birte and Abou Hachem, Maher}, year={2014}, month={Jun}, pages={713–721} } @article{goh_klaenhammer_2013, title={A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon}, volume={89}, ISSN={["1365-2958"]}, DOI={10.1111/mmi.12338}, abstractNote={Summary}, number={6}, journal={MOLECULAR MICROBIOLOGY}, author={Goh, Yong Jun and Klaenhammer, Todd R.}, year={2013}, month={Sep}, pages={1187–1200} } @article{johnson_selle_o'flaherty_goh_klaenhammer_2013, title={Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM}, volume={159}, ISSN={["1350-0872"]}, DOI={10.1099/mic.0.070755-0}, abstractNote={Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers.}, journal={MICROBIOLOGY-SGM}, author={Johnson, Brant and Selle, Kurt and O'Flaherty, Sarah and Goh, Yong Jun and Klaenhammer, Todd}, year={2013}, month={Nov}, pages={2269–2282} } @misc{abou hachem_andersen_barrangou_moller_fredslund_majumder_ejby_lahtinen_jacobsen_lo leggio_et al._2013, title={Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria}, volume={31}, ISSN={["1029-2446"]}, DOI={10.3109/10242422.2013.828048}, abstractNote={Abstract In recent years, a plethora of studies have demonstrated the paramount physiological importance of the gut microbiota on various aspects of human health and development. Particular focus has been set on probiotic members of this community, the best studied of which are assigned into the Lactobacillus and Bifidobacterium genera. Effects such as pathogen exclusion, alleviation of inflammation and allergies, colon cancer, and other bowel disorders are attributed to the activity of probiotic bacteria, which selectively ferment prebiotics comprising mainly non-digestible oligosaccharides. Thus, glycan metabolism is an important attribute of probiotic action and a factor influencing the composition of the gut microbiota. In the quest to understand the molecular mechanism of this selectivity for certain glycans, we have explored the routes of uptake and utilization of a variety of oligosaccharides differing in size, composition, and glycosidic linkages. A combination of “omics” technologies bioinformatics, enzymology and protein characterization proved fruitful in elucidating the protein transport and catabolic machinery conferring the utilization of glucosides, galactosides, and xylosides in the two clinically validated probiotic strains Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bl-04. Importantly, we have been able to identify and in some cases validate the specificity of several transport systems, which are otherwise poorly annotated. Further, we have demonstrated for the first time that non-naturally occurring tri- and tetra-saccharides are internalized and efficiently utilized by probiotic bacteria in some cases better than well-established natural prebiotics. Selected highlights of these data are presented, emphasising the importance and the diversity of oligosaccharide transport in probiotic bacteria.}, number={4}, journal={BIOCATALYSIS AND BIOTRANSFORMATION}, publisher={Informa UK Limited}, author={Abou Hachem, Maher and Andersen, Joakim M. and Barrangou, Rodolphe and Moller, Marie S. and Fredslund, Folmer and Majumder, Avishek and Ejby, Morten and Lahtinen, Sampo J. and Jacobsen, Susanne and Lo Leggio, Leila and et al.}, year={2013}, month={Aug}, pages={226–235} } @article{andersen_barrangou_abou hachem_lahtinen_goh_svensson_klaenhammer_2013, title={Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04}, volume={14}, ISSN={["1471-2164"]}, DOI={10.1186/1471-2164-14-312}, abstractNote={Abstract}, number={1}, journal={BMC GENOMICS}, publisher={Springer Nature}, author={Andersen, Joakim M. and Barrangou, Rodolphe and Abou Hachem, Maher and Lahtinen, Sampo J. and Goh, Yong Jun and Svensson, Birte and Klaenhammer, Todd R.}, year={2013}, month={May} } @article{andersen_barrangou_abou hachem_lahtinen_goh_svensson_klaenhammer_2012, title={Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM}, volume={7}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0044409}, abstractNote={The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.}, number={9}, journal={PLOS ONE}, publisher={Public Library of Science (PLoS)}, author={Andersen, Joakim Mark and Barrangou, Rodolphe and Abou Hachem, Maher and Lahtinen, Sampo J. and Goh, Yong-Jun and Svensson, Birte and Klaenhammer, Todd R.}, editor={Gibas, CynthiaEditor}, year={2012}, month={Sep} } @article{goh_goin_o'flaherty_altermann_hutkins_2011, title={Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9}, volume={10}, ISSN={["1475-2859"]}, DOI={10.1186/1475-2859-10-s1-s22}, abstractNote={Abstract}, journal={MICROBIAL CELL FACTORIES}, author={Goh, Yong Jun and Goin, Caitlin and O'Flaherty, Sarah and Altermann, Eric and Hutkins, Robert}, year={2011}, month={Aug} } @article{andersen_barrangou_abou hachem_lahtinen_goh_svensson_klaenhammer_2011, title={Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus}, volume={108}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.1114152108}, abstractNote={Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although β-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci inLactobacillus acidophilusNCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth ofL. acidophilusNCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbpgal-lacgene cluster,lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two β-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of alacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic β-galactosides, known to selectively modulate the beneficial gut microbiota.}, number={43}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, publisher={Proceedings of the National Academy of Sciences}, author={Andersen, Joakim M. and Barrangou, Rodolphe and Abou Hachem, Maher and Lahtinen, Sampo and Goh, Yong Jun and Svensson, Birte and Klaenhammer, Todd R.}, year={2011}, month={Oct}, pages={17785–17790} } @article{goh_klaenhammer_2010, title={Functional Roles of Aggregation-Promoting-Like Factor in Stress Tolerance and Adherence of Lactobacillus acidophilus NCFM}, volume={76}, ISSN={["1098-5336"]}, DOI={10.1128/aem.00030-10}, abstractNote={ABSTRACT}, number={15}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Goh, Yong Jun and Klaenhammer, Todd R.}, year={2010}, month={Aug}, pages={5005–5012} } @article{goh_azcarate-peril_o'flaherty_durmaz_valence_jardin_lortal_klaenhammer_2009, title={Development and Application of a upp-Based Counterselective Gene Replacement System for the Study of the S-Layer Protein SlpX of Lactobacillus acidophilus NCFM}, volume={75}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.02502-08}, abstractNote={ABSTRACT}, number={10}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Goh, Yong Jun and Azcarate-Peril, M. Andrea and O'Flaherty, Sarah and Durmaz, Evelyn and Valence, Florence and Jardin, Julien and Lortal, Sylvie and Klaenhammer, Todd R.}, year={2009}, month={May}, pages={3093–3105} } @misc{goh_klaenhammer_2009, title={Genomic features of Lactobacillus species}, volume={14}, journal={Frontiers in Bioscience}, author={Goh, Y. J. and Klaenhammer, T. R.}, year={2009}, pages={1362–1386} } @article{azcarate-peril_altermann_goh_tallon_sanozky-dawes_pfeiler_o'flaherty_buck_dobson_duong_et al._2008, title={Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism}, volume={74}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.00054-08}, abstractNote={ABSTRACT}, number={15}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, publisher={American Society for Microbiology}, author={Azcarate-Peril, M. Andrea and Altermann, Eric and Goh, Yong Jun and Tallon, Richard and Sanozky-Dawes, Rosemary B. and Pfeiler, Erika A. and O'Flaherty, Sarah and Buck, B. Logan and Dobson, Alleson and Duong, Tri and et al.}, year={2008}, month={Aug}, pages={4610–4625} } @article{klaenhammer_altermann_pfeiler_buck_goh_o'flaherty_barrangou_duong_2008, title={Functional genomics of probiotic Lactobacilli}, volume={42}, ISSN={["0192-0790"]}, DOI={10.1097/MCG.0b013e31817da140}, abstractNote={Lactic acid bacteria (LAB) have been used in fermentation processes for millennia. Recent applications such as the use of living cultures as probiotics have significantly increased industrial interest. Related bacterial strains can differ significantly in their genotype and phenotype, and features from one bacterial strain or species cannot necessarily be applied to a related one. These strain or family-specific differences often represent unique and applicable traits. Since 2002, the complete genomes of 13 probiotic LABs have been published. The presentation will discuss these genomes and highlight probiotic traits that are predicted, or functionally linked to genetic content. We have conducted a comparative genomic analysis of 4 completely sequenced Lactobacillus strains versus 25 lactic acid bacterial genomes present in the public database at thetime of analysis. Using Differential Blast Analysis, each genome is compared with 3 other Lactobacillus and 25 other LAB genomes. Differential Blast Analysis highlighted strain-specific genes that were not represented in any other LAB used in this analysis and also identified group-specific genes shared within lactobacilli. Lactobacillus-specific genes include mucus-binding proteins involved in cell-adhesion and several transport systems for carbohydrates and amino acids. Comparative genomic analysis has identified gene targets in Lactobacillus acidophilus for functional analysis, including adhesion to mucin and intestinal epithelial cells, acid tolerance, bile tolerance, and quorum sensing. Whole genome transcriptional profiling of L. acidophilus, and isogenic mutants thereof, has revealed the impact of varying conditions (pH, bile, carbohydrates) and food matrices on the expression of genes important to probiotic-linked mechanisms.}, number={8}, journal={JOURNAL OF CLINICAL GASTROENTEROLOGY}, publisher={Ovid Technologies (Wolters Kluwer Health)}, author={Klaenhammer, Todd R. and Altermann, Eric and Pfeiler, Erika and Buck, Brock Logan and Goh, Yong-Jun and O'Flaherty, Sarah and Barrangou, Rodolphe and Duong, Tri}, year={2008}, month={Sep}, pages={S160–S162} }