@article{zhu_zang_zhu_lu_chen_jiang_yan_dirican_selvan_kim_et al._2018, title={Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries}, volume={126}, ISSN={["1873-3891"]}, url={https://publons.com/publon/1678921/}, DOI={10.1016/j.carbon.2017.10.063}, abstractNote={Lithium-sulfur (Li-S) batteries are considered as a promising candidate for large-scale applications such as electrical vehicles (EVs) because of their high theoretical capacity, large energy density and low cost. However, due to the shuttling effect of polysulfides, the continuous capacity fading during cycling remains a substantial bumper for the practical use of Li-S batteries. Here, reduced graphene oxide (rGO) materials with different reduction degrees were used as the polysulfide inhibitor and were coated onto glass fiber separators to minimize the shutting of polysulfides. The influence of reduction degree on the effort of polysulfide rejection was investigated. The incorporation of rGO coating with higher reduction degree largely minimized the polysulfide shuttling, thus the Li-S cells with separators modified with high-reduction degree rGO was able to maintain a capacity of 733 mAh g−1 after 100 cycles and delivered a high capacity of 519 mAh g−1 at 2C, which were 42% and 90% higher than those of cells with separators coated with low-reduction degree rGO. Therefore, it was found that rGO with higher reduction degree demonstrated better polysulfide rejection performance than rGO with lower reduction degree. This study provides a promising strategy in the rGO selection for high-performance Li-S batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Pei and Zang, Jun and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, R. Kalai and Kim, David and et al.}, year={2018}, month={Jan}, pages={594–600} } @article{zhu_zhu_zang_chen_lu_jiang_yan_dirican_selvan_zhang_et al._2017, title={A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries}, volume={5}, ISSN={["2050-7496"]}, url={https://doi.org/10.1039/C7TA03301J}, DOI={10.1039/c7ta03301j}, abstractNote={A novel, bi-functional double-layer reduced graphene oxide (rGO)–polyvinylidene fluoride (PVDF)/PVDF membrane was fabricated by a simple electrospinning technique and was used as a promising separator for lithium–sulfur batteries. This double-layer membrane separator delivers two different functionalities: (i) the porous PVDF nanofiber framework in both rGO–PVDF and PVDF layers provides good thermal stability and maintains the structural integrity of the separator; and (ii) the conductive rGO–PVDF layer serves as a polysulfide inhibitor and ensures the fast transfer of lithium ions. Compared to conventional polypropylene membrane separators, this new separator design can significantly enhance the cycling stability and rate capability of the incorporated lithium–sulfur batteries. Overall, it is demonstrated that this new double-layer rGO–PVDF/PVDF composite membrane separator opens an alternate avenue in the structural design of high-performance lithium–sulfur batteries in dealing with multiple challenges.}, number={29}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Pei and Zhu, Jiadeng and Zang, Jun and Chen, Chen and Lu, Yao and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, Ramakrishnan Kalai and Zhang, Xiangwu and et al.}, year={2017}, month={Aug}, pages={15096–15104} } @article{ge_zhu_dirican_jia_yanilmaz_lu_chen_qiu_zhang_2017, title={Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite}, volume={188}, ISSN={["1873-4979"]}, url={https://publons.com/publon/26924645/}, DOI={10.1016/j.matlet.2016.11.025}, abstractNote={Nanofiber structured Na2Ti3O7 was synthesized via electrospinning process which was further used as an anode material for sodium-ion batteries for the first time. One-dimensional construction of Na2Ti3O7 composite could contribute to better electrochemical activity. It was demonstrated that the capacity of Na2Ti3O7 nanofibers was significantly improved to 257.8 mAh g−1 at 30 mA g−1. Furthermore, the rate capability of Na2Ti3O7 nanofibers was significantly enhanced, showing charge capacities were 161.8, 116.5, and 72.4 mAh g−1 at 100, 200, and 400 mA g−1, respectively. Therefore, improved specific capacity and rate capability made Na2Ti3O7 nanofibers composite as a promising anode material for sodium-ion batteries.}, journal={MATERIALS LETTERS}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Dirican, Mahmut and Jia, Hao and Yanilmaz, Meltem and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2017}, month={Feb}, pages={176–179} } @article{yanilmaz_zhu_lu_ge_zhang_2017, title={High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries}, volume={52}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924646/}, DOI={10.1007/s10853-017-0764-8}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Yanilmaz, Meltem and Zhu, Jiadeng and Lu, Yao and Ge, Yeqian and Zhang, Xiangwu}, year={2017}, month={May}, pages={5232–5241} } @article{chen_li_zhu_lu_jiang_hu_shen_zhang_2017, title={In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries}, volume={120}, ISSN={["1873-3891"]}, url={https://doi.org/10.1016/j.carbon.2017.05.072}, DOI={10.1016/j.carbon.2017.05.072}, abstractNote={As potential alternatives to lithium-ion batteries in grid energy storage application, sodium-ion batteries (SIBs) have attracted tremendous attention. Absence of high-performance anode material remains a challenge to commercialize SIBs. Herein, a SnSbSx/porous carbon nanofiber (SnSbSx/PCNF) composite with superior performance is successfully prepared via electrospinning, followed by a sulfuration treatment. The as-prepared SnSbSx/PCNF composite exhibits a unique two-dimensional nano-sheet morphology. As a result, the SnSbSx/PCNFs can deliver a high reversible capacity of 566.7 mAh g−1 after 80 cycles and achieve good cycling stability and rate capability when used as anode materials for SIBs. The improved electrochemical performance of SnSbSx/PCNFs can be ascribed to the synergistic effects of SnSbSx nano-sheets and enhanced diffusion coefficient of Na+ in sulfurated PCNFs (SPCNFs), which can not only provide good electronic conductivity but also buffer the volume change of the SnSbSx nano-sheets during sodiation/desodiation process. Additionally, the sulfuration process generates a sulfur doping effect on the PCNFs, further enhancing their sodium storage ability. Therefore, the excellent Na-storage ability demonstrates SnSbSx/PCNFs a great potential as anode material for high-performance SIBs.}, journal={CARBON}, publisher={Elsevier BV}, author={Chen, Chen and Li, Guoqing and Zhu, Jiadeng and Lu, Yao and Jiang, Mengjin and Hu, Yi and Shen, Zhen and Zhang, Xiangwu}, year={2017}, month={Aug}, pages={380–391} } @article{luo_qiao_xu_li_zhu_chen_lu_zhu_zhang_wei_et al._2017, title={Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries}, volume={21}, ISSN={["1433-0768"]}, url={https://publons.com/publon/26924649/}, DOI={10.1007/s10008-016-3501-3}, number={5}, journal={JOURNAL OF SOLID STATE ELECTROCHEMISTRY}, author={Luo, L. and Qiao, H. and Xu, W. Z. and Li, D. W. and Zhu, J. D. and Chen, C. and Lu, Y. and Zhu, P. and Zhang, X. W. and Wei, Q. F. and et al.}, year={2017}, month={May}, pages={1385–1395} } @article{zhu_ge_kim_lu_chen_jiang_zhang_2016, title={A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries}, volume={20}, ISSN={["2211-3282"]}, url={https://doi.org/10.1016/j.nanoen.2015.12.022}, DOI={10.1016/j.nanoen.2015.12.022}, abstractNote={Lithium-sulfur batteries have received intense attention because of their high theoretical capacity, low cost and environmental friendliness. However, low active material utilization and poor cycle life limit their practical applications. Here, we report a strategy to obtain high capacity with long cycle life and rapid charge rate by introducing a carbon coating on the separator. Excellent cycling performance with a high capacity 956 mAh g−1 after 200 cycles and outstanding high-rate response up to 4 C are achieved, which are among the best reports so far. High electrochemical performance can be obtained even at a high sulfur loading of 3.37 mg cm−2. Such improved results could be ascribed to the conductive carbon coating, which not only reduces the cell resistance but blocks the diffusion of soluble polysulfides avoiding shuttle effect during cycling. This study demonstrates a feasible, low cost and scalable approach to address the long-term cycling challenge for lithium-sulfur batteries.}, journal={NANO ENERGY}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Ge, Yeqian and Kim, David and Lu, Yao and Chen, Chen and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={176–184} } @article{chen_li_lu_zhu_jiang_hu_cao_zhang_2016, title={Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries}, volume={222}, ISSN={["1873-3859"]}, url={https://publons.com/publon/26924666/}, DOI={10.1016/j.electacta.2016.11.170}, abstractNote={Due to its high theoretical capacity and unique layered structure, MoS2 has attracted attention as a sodium-ion battery anode material. However, the electrochemical performance of MoS2 based anodes is hindered by their low intrinsic conductivity and large volume change during cycling. In this report, nano-sized MoS2 sheets are synthesized using a scalable chemical vapor deposition method on the surface of electrospun carbon nanofibers (CNFs). The morphology of the resultant MoS2@CNFs is investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, while their electrochemical performance is studied using cyclic voltammetry and galvanostatic charge-discharge. The results demonstrate that a strong interconnection between MoS2 nanosheets and CNFs is formed and the conductive network of CNFs is beneficial for the sodium ion kinetics. When investigated as an anode for sodium-ion batteries, a high reversible capacity of 380 mA h g−1 is obtained after 50 cycles with good cycling stability. In particular, MoS2@CNFs can deliver a capacity of 198 mA h g−1 under a high current density of 1 A g−1 after 500 cycles, indicating their great potential as anode material for long-life sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Chen, Chen and Li, Guoqing and Lu, Yao and Zhu, Jiadeng and Jiang, Mengjin and Hu, Yi and Cao, Linyou and Zhang, Xiangwu}, year={2016}, month={Dec}, pages={1751–1760} } @article{lu_fu_zhu_chen_yanilmaz_dirican_ge_jiang_zhang_2016, title={Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition}, volume={51}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924656/}, DOI={10.1007/s10853-016-9768-z}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Lu, Yao and Fu, Kun and Zhu, Jiadeng and Chen, Chen and Yanilmaz, Meltem and Dirican, Mahmut and Ge, Yeqian and Jiang, Han and Zhang, Xiangwu}, year={2016}, month={May}, pages={4549–4558} } @article{luo_xu_xia_fei_zhu_chen_lu_wei_qiao_zhang_et al._2016, title={Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes}, volume={42}, ISSN={["1873-3956"]}, url={https://publons.com/publon/26924662/}, DOI={10.1016/j.ceramint.2016.03.211}, abstractNote={ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.}, number={9}, journal={CERAMICS INTERNATIONAL}, author={Luo, L. and Xu, W. Z. and Xia, Z. K. and Fei, Y. Q. and Zhu, J. D. and Chen, C. and Lu, Y. and Wei, Q. F. and Qiao, H. and Zhang, X. W. and et al.}, year={2016}, month={Jul}, pages={10826–10832} } @article{zhu_yildirim_aly_shen_chen_lu_jiang_kim_tonelli_pasquinelli_et al._2016, title={Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study}, volume={4}, ISSN={["2050-7496"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84984804707&partnerID=MN8TOARS}, DOI={10.1039/c6ta04577d}, abstractNote={Sulfur (S) has been considered as a promising cathode candidate for lithium batteries due to its high theoretical specific capacity and energy density. However, the low active material utilization, severe capacity fading, and short lifespan of the resultant lithium–sulfur (Li–S) batteries have greatly hindered their practicality. In this work, a multi-functional polyacrylonitrile/silica nanofiber membrane with an integral ultralight and thin multi-walled carbon nanotube sheet is presented and it provides a new approach to significantly improve the overall electrochemical performance of Li–S batteries. The experimental results are in agreement with molecular modeling studies based on density functional theory and Monte Carlo simulations. Remarkably, this design is favorable for the fast diffusion of both lithium ions and electrons and the mitigation of the diffusion of polysulfides. As a consequence, a high reversible capacity of 741 mA h g−1 at 0.2C after 100 cycles with excellent cyclability and high-rate performance (627 mA h g−1 at 1C) are achieved even with a high sulfur loading of 70 wt% in the cathode, revealing its great potential for energy storage applications. Moreover, a capacity of 426 mA h g−1 is retained after 300 cycles at a high current density of 2C. These results represent a major step forward in the progress of Li–S battery technologies.}, number={35}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Jiadeng and Yildirim, Erol and Aly, Karim and Shen, Jialong and Chen, Chen and Lu, Yao and Jiang, Mengjin and Kim, David and Tonelli, Alan E. and Pasquinelli, Melissa A. and et al.}, year={2016}, pages={13572–13581} } @article{zhu_chen_lu_zang_jiang_kim_zhang_2016, title={Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries}, volume={101}, ISSN={["1873-3891"]}, url={https://doi.org/10.1016/j.carbon.2016.02.007}, DOI={10.1016/j.carbon.2016.02.007}, abstractNote={Lithium–sulfur (Li–S) batteries have been considered as a promising candidate for next-generation energy-storage devices due to their high theoretical capacity and energy density. However, the severe self-discharge behavior of Li–S batteries strongly limits their use in practical applications. Here, we report a sustainable and highly porous polyacrylonitrile/graphene oxide (PAN/GO) nanofiber membrane separator that simultaneously enables large capacity and excellent anti-self-discharge capability for lithium–sulfur batteries. A low retention loss (5%) can be achieved even after a resting time of 24 h. Besides benefitting from the highly porous structure and excellent electrolyte wettability of the nanofiber separator, the improved performance can also be ascribed to the excellent barrier effects caused by the relatively high energy binding between –C≡N and Li2S/polysulfides and the electrostatic interactions between GO and negatively charged species (Sn2−). It is, therefore, demonstrated that this GO incorporated PAN nanofiber separator with highly porous structure and excellent electrolyte wettability is a promising separator candidate for high-performance Li–S batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Zang, Jun and Jiang, Mengjin and Kim, David and Zhang, Xiangwu}, year={2016}, month={May}, pages={272–280} } @article{stanley_scholle_zhu_lu_zhang_situ_ghiladi_2016, title={Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile}, volume={6}, ISSN={2079-4991}, url={http://dx.doi.org/10.3390/nano6040077}, DOI={10.3390/nano6040077}, abstractNote={Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm2; 400–700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por(+) also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.}, number={4}, journal={Nanomaterials}, publisher={MDPI AG}, author={Stanley, Sarah and Scholle, Frank and Zhu, Jiadeng and Lu, Yao and Zhang, Xiangwu and Situ, Xingci and Ghiladi, Reza}, year={2016}, month={Apr}, pages={77} } @article{jiang_zhu_chen_lu_ge_zhang_2016, title={Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors}, volume={8}, ISSN={["1944-8244"]}, url={https://publons.com/publon/26924655/}, DOI={10.1021/acsami.5b11984}, abstractNote={Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.}, number={5}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={3473–3481} } @article{zhu_lu_chen_ge_jasper_leary_li_jiang_zhang_2016, title={Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity}, volume={672}, ISSN={["1873-4669"]}, url={https://doi.org/10.1016/j.jallcom.2016.02.160}, DOI={10.1016/j.jallcom.2016.02.160}, abstractNote={Hematite iron oxide (α-Fe2O3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g−1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe2O3 hinder its use in practical batteries. In this study, carbon-coated α-Fe2O3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g−1 even at superior high current density of 1000 mA g−1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe2O3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Lu, Yao and Chen, Chen and Ge, Yeqian and Jasper, Samuel and Leary, Jennifer D. and Li, Dawei and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Jul}, pages={79–85} } @article{yanilmaz_lu_zhu_zhang_2016, title={Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries}, volume={313}, ISSN={["1873-2755"]}, url={https://publons.com/publon/26924661/}, DOI={10.1016/j.jpowsour.2016.02.089}, abstractNote={Silica/polyacrylonitrile (SiO2/PAN) hybrid nanofiber membranes were fabricated by using sol-gel and electrospinning techniques and their electrochemical performance was evaluated for use as separators in lithium-ion batteries. The aim of this study was to design high-performance separator membranes with enhanced electrochemical performance and good thermal stability compared to microporous polyolefin membranes. In this study, SiO2 nanoparticle content up to 27 wt% was achieved in the membranes by using sol-gel technique. It was found that SiO2/PAN hybrid nanofiber membranes had superior electrochemical performance with good thermal stability due to their high SiO2 content and large porosity. Compared with commercial microporous polyolefin membranes, SiO2/PAN hybrid nanofiber membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN hybrid nanofiber membranes with different SiO2 contents (0, 16, 19 and 27 wt%) were also assembled into lithium/lithium iron phosphate cells, and high cell capacities and good cycling performance were demonstrated at room temperature. In addition, cells using SiO2/PAN hybrid nanofiber membranes with high SiO2 contents showed superior C-rate performance compared to those with low SiO2 contents and commercial microporous polyolefin membrane.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Yanilmaz, Meltem and Lu, Yao and Zhu, Jiadeng and Zhang, Xiangwu}, year={2016}, month={May}, pages={205–212} } @article{jiang_zhu_chen_lu_pampal_luo_zhu_zhang_2016, title={Superior high-voltage aqueous carbon/ carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes}, volume={4}, ISSN={["2050-7496"]}, url={https://publons.com/publon/26924664/}, DOI={10.1039/c6ta07063a}, abstractNote={Electrodeposited polyvinyl alcohol borate (PVAB) aqueous gel polymer electrolytes (GPEs) have been found to possess excellent high-voltage stability and high ionic conductivity which are promising in building aqueous supercapacitors with high operating voltage and good electrochemical performance. In this study, PVAB GPEs were formed directly on activated carbon electrodes by in situ electrodeposition to serve as both electrolytes and separators for high-voltage aqueous carbon/carbon supercapacitors. The morphology and structure of the prepared PVAB GPE layers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The electrochemical performance of supercapacitors using PVAB GPEs was tested and compared with those of supercapacitors using neutral salt aqueous electrolytes and organic electrolytes. The results show that the PVA molecules in PVAB GPEs are in the amorphous state and crosslinked by O → B− coordination bonds. The supercapacitors using PVAB GPEs can operate stably at 2 V, and no drastic electrolysis is observed in these supercapacitors even at 4 V. Among all the PVABs, PVA potassium borate (PVAPB) GPEs possess the best ionic conductivity. The high energy densities of 12.47 and 7.14 W h kg−1 can be achieved for the supercapacitor using the PVAPB GPE at the current densities of 0.2 and 2 A g−1, respectively, which are better than those of supercapacitors using 1 M Li2SO4 aqueous electrolyte and 1 M LiPF6 organic electrolyte especially at high current densities. The reversible ionization of water molecules cooperating with the reversible formation of O → B− coordination bonds is considered to play a critical role in the ionic transportation of PVAB GPEs.}, number={42}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Pampal, Esra Serife and Luo, Lei and Zhu, Pei and Zhang, Xiangwu}, year={2016}, pages={16588–16596} } @article{chen_lu_ge_zhu_jiang_li_hu_zhang_2016, title={Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries}, volume={4}, ISSN={["2194-4296"]}, url={https://doi.org/10.1002/ente.201600205}, DOI={10.1002/ente.201600205}, abstractNote={Nitrogen-doped carbon nanofibers (CNFs) were synthesized using a facile electrospinning technique with the addition of urea as a nitrogen-doping agent. The amount of urea was selectively adjusted to control the degree and effectiveness of N-doping. The morphology of N-doped CNFs was investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, whereas their electrochemical performance was studied using cyclic voltammetry and galvanostatic charge–discharge experiments. The nitrogen content of N-doped CNFs increased significantly from 11.31 % to 19.06 % when the doping amount of urea increased from 0 % to 30 %. N-doping also played an important role in improving the electrochemical performance of the CNFs by introducing more defects in the carbon structure. Results showed that N-doped CNFs with the highest nitrogen content (19.06 %) exhibited the largest reversible capacity of 354 mAh g−1 under a current density of 50 mA g−1; and when the current density was increased to 1 A g−1, a capacity of 193 mAh g−1 was still maintained. It is, therefore, demonstrated that N-doped CNFs have great potential as suitable sodium-ion battery anode material.}, number={11}, journal={ENERGY TECHNOLOGY}, publisher={Wiley}, author={Chen, Chen and Lu, Yao and Ge, Yeqian and Zhu, Jiadeng and Jiang, Han and Li, Yongqiang and Hu, Yi and Zhang, Xiangwu}, year={2016}, month={Nov}, pages={1440–1449} } @article{zhu_yanilmaz_fu_chen_lu_ge_kim_zhang_2016, title={Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries}, volume={504}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924654/}, DOI={10.1016/j.memsci.2016.01.020}, abstractNote={Glass fiber (GF) membrane is evaluated as a potential separator for lithium–sulfur batteries. It is found that GF membrane has a highly porous structure with superior thermal stability, resulting in high liquid electrolyte uptake and enhanced electrochemical performance. Li–S cells using GF membrane as the separator can retain a capacity of 617 mA h g−1 after 100 cycles at a current density of 0.2 C, which is 42% higher than that of cells using commercial microporous polypropylene separator. During rate capability tests, the capacity of Li–S cells using GF membrane decreases slowly from the reversible capacity of 616 mA h g−1 at 0.2 C to 505, 394 and 262 mA h g−1 at 0.5 C, 1 C, and 2 C, respectively. It should be noted that these cells can still deliver a high capacity of 587 mA h g−1 with a high retention of 95% when the current density is lowered back to 0.2 C. The improved cycling and rate performance are ascribed to the fact that the highly porous GF membrane can increase the intake of soluble polysulfide intermediates and slow down their rapid diffusion to the Li anode side, which can not only improve the utilization of active material, but help protect the Li anode surface as well.}, journal={JOURNAL OF MEMBRANE SCIENCE}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Yanilmaz, Meltem and Fu, Kun and Chen, Chen and Lu, Yao and Ge, Yeqian and Kim, David and Zhang, Xiangwu}, year={2016}, month={Apr}, pages={89–96} } @article{dirican_lu_ge_yildiz_zhang_2015, title={Carbon-Confined Sno(2)-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material}, volume={7}, ISSN={["1944-8252"]}, url={https://publons.com/publon/26924673/}, DOI={10.1021/acsami.5b04338}, abstractNote={Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).}, number={33}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Dirican, Mahmut and Lu, Yao and Ge, Yeqian and Yildiz, Ozkan and Zhang, Xiangwu}, year={2015}, month={Aug}, pages={18387–18396} } @article{lu_fu_zhang_li_chen_zhu_yanilmaz_dirican_zhang_2015, title={Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors}, volume={273}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.09.130}, DOI={10.1016/j.jpowsour.2014.09.130}, abstractNote={Carbon nanofibers (CNFs), among various carbonaceous candidates for electric double-layer capacitor (EDLC) electrodes, draw extensive attention because their one-dimensional architecture offers both shortened electron pathways and high ion-accessible sites. Creating porous structures on CNFs yields larger surface area and enhanced capacitive performance. Herein, porous carbon nanofibers (PCNFs) were synthesized via centrifugal spinning of polyacrylonitrile (PAN)/poly(methyl methacrylate) (PMMA) solutions combined with thermal treatment and were used as binder-free EDLC electrodes. Three precursor fibers with PAN/PMMA weight ratios of 9/1, 7/3 and 5/5 were prepared and carbonized at 700, 800, and 900 °C, respectively. The highest specific capacitance obtained was 144 F g−1 at 0.1 A g−1 with a rate capability of 74% from 0.1 to 2 A g−1 by PCNFs prepared with PAN/PMMA weight ratio of 7/3 at 900 °C. These PCNFs also showed stable cycling performance. The present work demonstrates that PCNFs are promising EDLC electrode candidate and centrifugal spinning offers a simple, cost-effective strategy to produce PCNFs.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Lu, Yao and Fu, Kun and Zhang, Shu and Li, Ying and Chen, Chen and Zhu, Jiadeng and Yanilmaz, Meltem and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Jan}, pages={502–510} } @article{jiang_ge_fu_lu_chen_zhu_dirican_zhang_2015, title={Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries}, volume={50}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924667/}, DOI={10.1007/s10853-014-8666-5}, number={3}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Jiang, Han and Ge, Yeqian and Fu, Kun and Lu, Yao and Chen, Chen and Zhu, Jiadeng and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Feb}, pages={1094–1102} } @article{dirican_yildiz_lu_fang_jiang_kizil_zhang_2015, title={Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries}, volume={169}, ISSN={["1873-3859"]}, url={https://doi.org/10.1016/j.electacta.2015.04.035}, DOI={10.1016/j.electacta.2015.04.035}, abstractNote={High-capacity flexible electrode materials for high-energy lithium–ion batteries become critically important with technological improvements on portable and bendable electronic equipment such as rollup displays, implantable medical devices, active radio-frequency identification tags, and wearable devices. Although different types of bendable electrode materials have been introduced, it is very important to fabricate highly-flexible electrode materials with reasonable fabrication technique and high electrochemical performance similar to those of conventional high-capacity electrode materials. Herein, we introduced high-capacity, flexible Si/SiO2/C nanofiber composite anode materials by simple electrospinning and subsequent heat treatment processes. To further improve the long-term cycling performance, additional nanoscale carbon coating of flexible Si/SiO2/C nanofibers was performed by CVD technique. Electrochemical performance results showed that CVD carbon-coated flexible Si/SiO2/C nanofiber composites exhibited high capacity retention of 86.7% and high coulombic efficiency of 96.7% at the 50th cycle. It is, therefore, demonstrated that CVD carbon-coated flexible Si/SiO2/C nanofiber composites are promising anode material candidate for next-generation flexible and high-energy lithium–ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Dirican, Mahmut and Yildiz, Ozkan and Lu, Yao and Fang, Xiaomeng and Jiang, Han and Kizil, Huseyin and Zhang, Xiangwu}, year={2015}, month={Jul}, pages={52–60} } @article{ge_jiang_zhu_lu_chen_hu_qiu_zhang_2015, title={High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries}, volume={157}, ISSN={["1873-3859"]}, url={https://publons.com/publon/10720328/}, DOI={10.1016/j.electacta.2015.01.086}, abstractNote={Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO2) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO2 was able to achieve high energy density. However, nanosized TiO2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO2 nanoparticles. The resultant carbon-coated TiO2 nanoparticles exhibited high reversible capacity (242.3 mAh g−1), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g−1 over 100 cycles. By comparison, untreated TiO2 nanoparticles showed comparable reversible capacity (237.3 mAh g−1) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO2 nanoparticles was also displayed as high as 127.6 mAh g−1 at a current density of 800 mA g−1. The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO2 nanoparticles are promising anode candidate for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Hu, Yi and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Mar}, pages={142–148} } @article{li_lv_zhu_lu_chen_zhang_wei_2015, title={NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications}, volume={15}, ISSN={["1424-8220"]}, url={https://publons.com/publon/26924676/}, DOI={10.3390/s151129419}, abstractNote={NiCu alloy nanoparticle-loaded carbon nanofibers (NiCuCNFs) were fabricated by a combination of electrospinning and carbonization methods. A series of characterizations, including SEM, TEM and XRD, were employed to study the NiCuCNFs. The as-prepared NiCuCNFs were then mixed with laccase (Lac) and Nafion to form a novel biosensor. NiCuCNFs successfully achieved the direct electron transfer of Lac. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical properties of the biosensor. The finally prepared biosensor showed favorable electrocatalytic effects toward hydroquinone. The detection limit was 90 nM (S/N = 3), the sensitivity was 1.5 µA µM−1, the detection linear range was 4 × 10−7–2.37 × 10−6 M. In addition, this biosensor exhibited satisfactory repeatability, reproducibility, anti-interference properties and stability. Besides, the sensor achieved the detection of hydroquinone in lake water.}, number={11}, journal={SENSORS}, publisher={MDPI AG}, author={Li, Dawei and Lv, Pengfei and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Zhang, Xiangwu and Wei, Qufu}, year={2015}, month={Nov}, pages={29419–29433} } @article{zhu_chen_lu_ge_jiang_fu_zhang_2015, title={Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries}, volume={94}, ISSN={["1873-3891"]}, url={https://publons.com/publon/26924672/}, DOI={10.1016/j.carbon.2015.06.076}, abstractNote={Nitrogen-doped carbon nanofibers (N-CNFs) derived from polyacrylonitrile were successfully synthesized by a combination of electrospinning and thermal treatment processes. The as-prepared N-CNFs were used as anode material for sodium-ion batteries due to their unique fabric and weakly-ordered turbostratic structure as well as large spacing between graphene layers. Results show that N-CNFs carbonized at 800 °C delivered a high reversible capacity of 293 mAh g−1 at a current density of 50 mA g−1 in the first cycle. Even though the first-cycle Coulombic efficiency was 64%, it increased to nearly 100% only after a few initial cycles. Additionally, these N-CNFs showed excellent cycling and high-rate performance, and maintained a capacity of up to 150 mAh g−1 even at an extremely high current density of 1000 mA g−1 for over 200 cycles. It is, therefore, demonstrated that N-CNFs prepared under appropriate conditions are promising anode material candidate for sodium-ion batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Xiangwu}, year={2015}, month={Nov}, pages={189–195} } @article{dirican_lu_fu_kizil_zhang_2015, title={SiO2-confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries}, volume={5}, ISSN={["2046-2069"]}, url={https://publons.com/publon/20548465/}, DOI={10.1039/c5ra03129j}, abstractNote={Because of its ultra-high theoretical capacity (4200 mA h g−1), Si is considered as the most promising anode material candidate for next-generation high-energy lithium-ion batteries. However, the practical use of Si based anodes is constrained by the high volume change (up to 400%) of the Si active material during cycling. Intensive volume change of Si causes severe pulverization, loss of electrical contact between Si particles and the carbon current collector, and unstable SEI formation on the electrode surface. Herein, we introduce nanoscale silica-coated silicon/carbon (Si@C–SiO2) nanofiber composites that can maintain their structural stability during repeated cycling. Results indicated that nanoscale SiO2 coating of Si@C nanofibers helped preserve the Si particles within the nanofiber structure, resulting in stable solid electrolyte interphase formation and improved cycling performance. Electrochemical performance results showed that the Si@C–SiO2 nanofiber composite anodes had good capacity retention of 89.8% and high coulombic efficiency of 97.2% at the 50th cycle. It is, therefore, demonstrated that nanoscale SiO2 coating is an effective method to improve the electrochemical performance of Si@C nanofiber composite anodes.}, number={44}, journal={RSC ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Dirican, Mahmut and Lu, Yao and Fu, Kun and Kizil, Huseyin and Zhang, Xiangwu}, year={2015}, pages={34744–34751} } @article{yanilmaz_lu_li_zhang_2015, title={SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries}, volume={273}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.10.015}, DOI={10.1016/j.jpowsour.2014.10.015}, abstractNote={Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning technique, which is commonly used for making fiber-based separator membranes. In this work, SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning and they were characterized by using different electrochemical techniques for use as separators in Li-ion batteries. SiO2/PAN membranes exhibited good wettability and high ionic conductivity due to their highly porous fibrous structure. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using SiO2/PAN membranes showed superior C-rate performance compared to those using microporous PP membrane.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Yanilmaz, Meltem and Lu, Yao and Li, Ying and Zhang, Xiangwu}, year={2015}, month={Jan}, pages={1114–1119} } @article{ge_zhu_lu_chen_qiu_zhang_2015, title={The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites}, volume={176}, ISSN={["1873-3859"]}, url={https://publons.com/publon/26924674/}, DOI={10.1016/j.electacta.2015.07.105}, abstractNote={Titanium dioxide (TiO2) is a prospective anode candidate for sodium-ion batteries, owing to the advantages of good chemical stability, elemental abundance and nontoxicity. In this work, TiO2 embedded in carbon nanofiber (TiO2@CNF) composites are prepared for high-performance sodium-ion batteries by electrospinning and subsequent heat treatment in N2 at different temperatures. With increase in heat-treatment temperature, the diameter of nanofibers decreases and the crystal phase partially transforms from anatase to rutile. Among all composites, the TiO2@CNF composite treated at 550 °C has anatase structure and exhibits the highest initial reversible capacity (237.3 mAh g−1), largest initial coulombic efficiency (68.2%), and superior capacity retention (100.3%) over 100 cycles at 30 mA g−1. Whereas, the TiO2@CNF composite treated at 650 °C is 28.23% rutile and 71.77% anatase, and shows the best rate capability of 159.1 mAh g−1 even at current density of 800 mA g−1. It is, therefore, demonstrated that TiO2@CNF composites prepared with appropriate conditions are superior anode material for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Sep}, pages={989–996} } @article{chen_fu_lu_zhu_xue_hu_zhang_2015, title={Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries}, volume={5}, ISSN={["2046-2069"]}, url={https://publons.com/publon/26924669/}, DOI={10.1039/c5ra01729g}, abstractNote={Lithium-ion battery is currently the dominant energy storage technology for electronic devices and electric vehicles. However, the predictable rising cost of lithium raw materials has attracted increasing interest in less expensive rivals, such as sodium-ion battery. In this work, a tin antimony (SnSb) alloy-filled porous carbon nanofiber composite was prepared as a sodium-ion battery anode material by a simple electrospinning method with subsequent thermal treatment. The spinning solution contained antimony tin oxide nanoparticles as the SnSb alloy precursor, polyacrylonitrile as the carbon precursor, and polymethyl methacrylate (PMMA) as the pore generator. The resultant SnSb@C nanofiber composite formed a continuous conductive network, which was favorable for enhancing its electrochemical performance. The presence of the SnSb alloy significantly increased the energy storage capacity of the composite due to its high theoretical capacity. The porous structure created by the decomposition of the PMMA polymer provided a free space to buffer the volume change of the SnSb alloy during the sodiation–desodiation process. The resultant SnSb@C nanofiber composite exhibited high capacity and a stable rate capability, and it was demonstrated to be a promising anode candidate for sodium-ion batteries.}, number={39}, journal={RSC ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Chen, Chen and Fu, Kun and Lu, Yao and Zhu, Jiadeng and Xue, Leigang and Hu, Yi and Zhang, Xiangwu}, year={2015}, pages={30793–30800} } @article{dirican_yanilmaz_fu_lu_kizil_zhang_2014, title={Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries}, volume={264}, ISSN={["1873-2755"]}, url={https://publons.com/publon/20548470/}, DOI={10.1016/j.jpowsour.2014.04.102}, abstractNote={Tin oxides (SnO2) are promising anode material candidate for next-generation lithium-ion batteries due to their high capacity, low cost, high abundance, and low toxicity. However, the practical use of SnO2 anodes is currently limited by their large volume changes during cycling. Severe volume changes of SnO2 anodes lead to intense pulverization and loss of electrical contact between the active material and carbon conductor. Herein, we introduce binder-free SnO2-electrodeposited carbon nanofibers (CNF@SnO2) and SnO2-electrodeposited porous carbon nanofibers (PCNF@SnO2) composites that can maintain their structural stability during repeated charge–discharge cycling. Results indicated that the amount of the electrodeposited SnO2 nanoparticles and the capacity of the resultant composites were successfully enhanced by using a porous nanofiber structure. Both CNF@SnO2 and PCNF@SnO2 composites were also coated with amorphous carbon layers by chemical vapor deposition to further improve the structural stability. Electrochemical performance results demonstrated that the combination of porous nanofiber structure and CVD amorphous coating led to a novel carbon-coated PCNF@SnO2 composite anode with high capacity retention of 78% and large coulombic efficiency of 99.8% at the 100th cycle.}, journal={JOURNAL OF POWER SOURCES}, author={Dirican, Mahmut and Yanilmaz, Meltem and Fu, Kun and Lu, Yao and Kizil, Huseyin and Zhang, Xiangwu}, year={2014}, month={Oct}, pages={240–247} } @misc{zhang_lu_2014, title={Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost}, volume={54}, ISSN={["1558-3716"]}, url={https://publons.com/publon/26924688/}, DOI={10.1080/15583724.2014.935858}, abstractNote={Nanofibers are an important class of material that is useful in a variety of applications, including filtration, tissue engineering, protective clothing, battery separators, energy storage, etc. So far, electrospinning is the most used method for producing nanofibers. However, the wide-spread commercial use of electrospinning is limited mainly due to its low production rate. Most other nanofiber production methods, such as melt-blowing, bicomponent fiber spinning, phase separation, template synthesis, and self-assembly, are complex and can only be used to make nanofibers from limited types of polymers. Centrifugal spinning is an alternative method for producing nanofibers from various materials at high speed and low cost. In centrifugal spinning, the spinning fluid is placed in a rotating spinning head. When the rotating speed reaches a critical value, the centrifugal force overcomes the surface tension of the spinning fluid to eject a liquid jet from the nozzle tip of the spinning head. The jet then undergoes a stretching process and is eventually deposited on the collector, forming solidified nanofibers. Centrifugal spinning is simple and enables the rapid fabrication of nanofibers for various applications. This article gives an overview on the centrifugal spinning process, and compares it with conventional nanofiber production methods.}, number={4}, journal={POLYMER REVIEWS}, publisher={Informa UK Limited}, author={Zhang, Xiangwu and Lu, Yao}, year={2014}, pages={677–701} } @article{fu_lu_dirican_chen_yanilmaz_shi_bradford_zhang_2014, title={Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries}, volume={6}, ISSN={["2040-3372"]}, url={https://publons.com/publon/26924684/}, DOI={10.1039/c4nr00518j}, abstractNote={Silicon is a promising high capacity (4200 mA h g(-1)) anode material for lithium ion batteries but the significant volume change (over 300%) of silicon during lithiation/delithiation remains a challenge in terms of silicon pulverization and solid-electrolyte-interphase (SEI) accumulation in the silicon composite electrode. To alleviate the volumetric change of silicon, we built a flexible and self-supporting carbon-enhanced carbon nanofiber (CNF) structure with vacant chamber to encapsulate Si nanoparticles (vacant Si@CNF@C). This composite was tested directly without any polymer and current collector. The confined vacant chamber allowed the increasing volume of silicon and SEI accumulates to be well retained for a long cycle life. This chamber-confined silicon-carbon nanofiber composite exhibited an improved performance in terms of good cycling performance (620 mA h g(-1)), high coulombic efficiency (99%), and good capacity retention (80%) after 200 cycles. This self-supported silicon-carbon nanofiber structure showed high flexibility and good electrochemical performance for the potential as flexible electrode for lithium-ion batteries.}, number={13}, journal={NANOSCALE}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Lu, Yao and Dirican, Mahmut and Chen, Chen and Yanilmaz, Meltem and Shi, Quan and Bradford, Philip D. and Zhang, Xiangwu}, year={2014}, pages={7489–7495} } @article{ge_jiang_fu_zhang_zhu_chen_lu_qiu_zhang_2014, title={Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries}, volume={272}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.08.131}, DOI={10.1016/j.jpowsour.2014.08.131}, abstractNote={Lithium titanium oxide (Li4Ti5O12) is a promising anode material, owing to its superior safety and reliability. However, the main challenge of Li4Ti5O12 is the low material conductivity which restricts its electrochemical performance. In order to use Li4Ti5O12 in practical sodium-ion batteries, copper-doped Li4Ti5O12 (Li4−xCuxTi5O12, x = 0, 0.05, 0.1) nanoparticles were prepared to enhance the electronic conductivity. Copper-doped Li4Ti5O12 nanoparticles were then embedded in continuous carbon nanofibers (CNFs), which gave rise to fast electron transfer along the fiber direction. After copper-doping and CNF embedding, the resultant copper-doped Li4Ti5O12/CNFs achieved excellent reversible capacity (158.1 mAh g−1) at 30 mA g−1, high coulombic efficiency (99.87%), and good capacity retention (91%) after 150 cycles. In addition, copper-doped Li4Ti5O12/CNFs also exhibited good rate capability. It is, therefore, demonstrated that copper-doped Li4Ti5O12/CNFs are promising anode candidate.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Changhuan and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Qiu, Yiping and Zhang, Xiangwu}, year={2014}, month={Dec}, pages={860–865} } @article{yanilmaz_lu_dirican_fu_zhang_2014, title={Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques}, volume={456}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924682/}, DOI={10.1016/j.memsci.2014.01.022}, abstractNote={Nanoparticle-on-nanofiber hybrid membranes were prepared by electrospraying of SiO2 dispersions and electrospinning of polyvinylidene fluoride (PVDF) solution simultaneously. The aim of this study was to design new high-performance separator membranes with superior electrochemical properties such as high C-rate performance and good thermal stability compared to polyolefin based membranes. Uniform, bead-free fibrous structure with high amount of SiO2 nanoparticles exposed on PVDF nanofiber surfaces was observed. It was found that wettability and ionic conductivity were improved by dispersing SiO2 nanoparticles onto PVDF nanofiber surfaces. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. Compared with commercial microporous polyolefin membranes, SiO2/PVDF hybrid membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF hybrid membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. In addition, cells using SiO2/PVDF hybrid membrane separators showed superior C-rate performance compared to those using commercial microporous PP membrane.}, journal={JOURNAL OF MEMBRANE SCIENCE}, author={Yanilmaz, Meltem and Lu, Yao and Dirican, Mahmut and Fu, Kun and Zhang, Xiangwu}, year={2014}, month={Apr}, pages={57–65} } @article{li_hu_lu_zhang_xu_fu_li_chen_zhou_xia_et al._2014, title={One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries}, volume={254}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11754003/}, DOI={10.1016/j.jpowsour.2013.12.044}, abstractNote={One-dimensional silicon oxycarbide (SiOC)/C composite nanofibers were fabricated by electrospinning and subsequent heat treatment. Introducing carbon matrix to SiOC anode material is an efficient way to accommodate the large volume changes during cycling and also increase the amount of free carbon, which is beneficial for improving the reversible capacity. These SiOC/C composite nanofibers form free-standing conductive membranes that can be used directly as battery electrodes without adding carbon black or polymer binder. Results show that after 80 cycles, the discharge capacity of SiOC/C composite nanofiber anodes is 70% higher than that of Si/C nanofiber anodes and more than 1.5 times larger than those of commercial anodes made from graphite. It is, therefore, demonstrated that one-dimensional SiOC/C nanofibers are promising anode material with large capacities and good cycling stability.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Ying and Hu, Yi and Lu, Yao and Zhang, Shu and Xu, Guanjie and Fu, Kun and Li, Shuli and Chen, Chen and Zhou, Lan and Xia, Xin and et al.}, year={2014}, month={May}, pages={33–38} } @article{lu_zhang_li_xue_xu_zhang_2014, title={Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries}, volume={247}, ISSN={["1873-2755"]}, url={https://publons.com/publon/7178355/}, DOI={10.1016/j.jpowsour.2013.09.018}, abstractNote={Sodium vanadium fluorophosphate (NaVPO4F), a material candidate for sodium-ion battery cathodes, was synthesized via a high-temperature solid-state reaction approach. Different amounts of carbon coating were introduced in NaVPO4F to improve its electrochemical performance. The structure and morphology of the resultant cathode materials were examined by scanning electron microscopy and X-ray diffraction. The effects of carbon coating on the electrochemical performance were evaluated by cyclic voltammetry, charge–discharge curve, cycling performance and electrochemical impedance spectroscopy. The highest capacity achieved for this material was 97.8 mAh g−1 and the best capacity retention was 89% at the 20th cycle. Results demonstrated that appropriate amount of carbon coating could effectively improve the electrochemical performance of NaVPO4F, and carbon-coated NaVPO4F could offer promising future for sodium-ion battery cathode materials.}, journal={JOURNAL OF POWER SOURCES}, author={Lu, Yao and Zhang, Shu and Li, Ying and Xue, Leigang and Xu, Guanjie and Zhang, Xiangwu}, year={2014}, month={Feb}, pages={770–777} } @article{fu_li_dirican_chen_lu_zhu_li_cao_bradford_zhang_et al._2014, title={Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries}, volume={50}, ISSN={["1364-548X"]}, url={https://publons.com/publon/26924687/}, DOI={10.1039/c4cc04970e}, abstractNote={A self-inhibiting, gradient sulfur structure was designed and developed by the synthesis of a carbon nanofiber-sulphur composite via sulfur vapor deposition method for use as a binder-free sulfur cathode, exhibiting high sulfur loading (2.6 mg cm(-2)) and high sulfur content (65%) with a stable capacity of >700 mA h g(-1).}, number={71}, journal={CHEMICAL COMMUNICATIONS}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Li, Yanpeng and Dirican, Mahmut and Chen, Chen and Lu, Yao and Zhu, Jiadeng and Li, Yao and Cao, Linyou and Bradford, Philip D. and Zhang, Xiangwu and et al.}, year={2014}, pages={10277–10280} } @article{li_sun_xu_lu_zhang_xue_jur_zhang_2014, title={Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating}, volume={2}, ISSN={["2050-7496"]}, url={https://publons.com/publon/11754001/}, DOI={10.1039/c4ta01562b}, abstractNote={Si-based anode materials were prepared by electrospinning and carbonization using polyacrylonitrile as the spinning medium and carbon precursor. The effects of atomic layer deposition (ALD) alumina coatings with different thicknesses on the electrochemical performance of Si/C composite nanofiber anodes were investigated. Results show that when the ALD alumina coating cycle number is 28, the capacity retention at 100th cycle increases significantly from 36.1% to 82.3% and the coulombic efficiency increases from 98.4% to 99.9%, compared to those of the uncoated Si/C nanofiber anode. This demonstrates the excellent stability of ALD alumina-coated Si/C composite nanofiber anodes. The enhanced electrochemical performance is mainly due to the protective effect of conformal ALD alumina coating, which could improve the mechanical integrity of the electrode structure and prevent the side reactions between the electrode and the electrolyte.}, number={29}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Li, Ying and Sun, Yujie and Xu, Guanjie and Lu, Yao and Zhang, Shu and Xue, Leigang and Jur, Jesse S. and Zhang, Xiangwu}, year={2014}, pages={11417–11425} } @inproceedings{li_fu_xue_toprakci_li_zhang_xu_lu_zhang_2013, title={Co3O4/carbon composite nanofibers for use as anode material in advanced lithium-ion batteries}, volume={1140}, url={https://publons.com/publon/7178343/}, DOI={10.1021/bk-2013-1140.ch003}, abstractNote={Co3O4/carbon composite nanofibers were prepared by a combination of electrospinning and carbonization methods using 10 - 30 nm and 30 - 50 nm Co3O4 nanoparticles, respectively, and their potential use as the anode material in rechargeable lithium-ion batteries was investigated. The composite Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles showed large reversible capacities and good cycleability with charge capacities of 677 and 545 mAh g-1 at the second and twentieth cycles, respectively. In contrast, the composite Co3O4/carbon nanofiber electrode containing 10 - 30 nm Co3O4 nanoparticles showed fast capacity fading during cycling due to severe nanoparticle aggregation. Results suggested that the good electrochemical performance of Co3O4/carbon nanofiber electrode containing 30 - 50 nm Co3O4 nanoparticles was ascribed to the combination of the properties of both Co3O4 nanoparticles (large Li storage capability) and carbon nanofiber matrix (long cycle life), and therefore this electrode material could be potentially used in high-energy rechargeable lithium-ion batteries.}, booktitle={Nanotechnology for sustainable energy}, author={Li, S. L. and Fu, K. and Xue, L. G. and Toprakci, O. and Li, Y. and Zhang, S. and Xu, G. J. and Lu, Y. and Zhang, Xiangwu}, year={2013}, pages={55–66} } @article{li_xu_xue_zhang_yao_lu_toprakci_zhang_2013, title={Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes}, volume={160}, ISSN={["1945-7111"]}, url={https://publons.com/publon/674380/}, DOI={10.1149/2.031304jes}, abstractNote={Si/C and Si/carbon nanotube (CNT)/C composite nanofibers were prepared by electrospinning and carbonization. The carbon nanofiber matrix can accommodate the volume change of Si nanoparticles and provide continuous pathways for efficient charge transport along the fiber axis. CNTs can improve the electronic conductivity and electrochemical performance of the composite nanofiber anodes. Results showed that many different types of connections between CNTs, Si nanoparticles and carbon matrix were formed. At a high current density of 300 mA g−1, after 30 cycles, the capacity of Si/CNT/C composite nanofiber anode was 44.3% higher than the anode without CNT and the C-rate performance of Si/CNT/C composite nanofiber anode was also superior to that of Si/C anode. It is, therefore, demonstrated that Si/CNT/C nanofibers are promising anode material with large capacities, good cycling stability, and good rate capability.}, number={3}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Li, Ying and Xu, Guanjie and Xue, Leigang and Zhang, Shu and Yao, Yingfang and Lu, Yao and Toprakci, Ozan and Zhang, Xiangwu}, year={2013}, pages={A528–A534} } @article{li_xu_yao_xue_zhang_lu_toprakci_zhang_2013, title={Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive}, volume={17}, ISSN={["1433-0768"]}, url={https://publons.com/publon/674383/}, DOI={10.1007/s10008-013-2005-7}, number={5}, journal={JOURNAL OF SOLID STATE ELECTROCHEMISTRY}, author={Li, Ying and Xu, Guanjie and Yao, Yingfang and Xue, Leigang and Zhang, Shu and Lu, Yao and Toprakci, Ozan and Zhang, Xiangwu}, year={2013}, month={May}, pages={1393–1399} } @article{lu_li_zhang_xu_fu_lee_zhang_2013, title={Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process}, volume={49}, ISSN={["1873-1945"]}, url={https://publons.com/publon/7178360/}, DOI={10.1016/j.eurpolymj.2013.09.017}, abstractNote={Electrospinning is currently the most popular method for producing polymer nanofibers. However, the low production rate and safety concern limit the practical use of electrospinning as a cost-effective nanofiber fabrication approach. Herein, we present a novel and simple centrifugal spinning technology that extrudes nanofibers from polymer solutions by using a high-speed rotary and perforated spinneret. Polyacrylonitrile (PAN) nanofibers were prepared by selectively varying parameters that can affect solution intrinsic properties and operational conditions. The resultant PAN nanofibers were characterized by SEM, and XRD. The correlation between fiber morphology and processing conditions was established. Results demonstrated that the fiber morphology can be easily manipulated by controlling the spinning parameters and the centrifugal spinning process is a facile approach for fabricating polymer nanofibers in a large-scale and low-cost fashion.}, number={12}, journal={EUROPEAN POLYMER JOURNAL}, author={Lu, Yao and Li, Ying and Zhang, Shu and Xu, Guanjie and Fu, Kun and Lee, Hun and Zhang, Xiangwu}, year={2013}, month={Dec}, pages={3834–3845} } @article{xue_zhang_li_lu_toprakci_xia_chen_hu_zhang_2013, title={Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries}, volume={577}, ISSN={["1873-4669"]}, url={https://publons.com/publon/674387/}, DOI={10.1016/j.jallcom.2013.07.029}, abstractNote={Lithium-ion batteries have been wildly used in various portable electronic devices and the application targets are currently moving from small-sized mobile devices to large-scale electric vehicles and grid energy storage. Therefore, lithium-ion batteries with higher energy densities are in urgent need. For high-energy cathodes, Li2MnO3–LiMO2 layered–layered (M = Mn, Co, Ni) materials are of significant interest due to their high specific capacities over wide operating potential windows. Here, three Li2MnO3-based cathode materials with α-NaFeO2 structure were prepared by a facile co-precipitation method and subsequent heat treatment. Among these three materials, 0.3Li2MnO3·0.5LiMn0.5Ni0.5O2·0.2LiCoO2 shows the best lithium storage capability. This cathode material is composed of uniform nanosized particles with diameters ranging from 100 to 200 nm, and it could be charged to a high cutoff potential to extract more lithium, resulting in a high capacity of 178 mAh g−1 between 2.0 and 4.6 V with almost no capacity loss over 100 cycles.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, author={Xue, Leigang and Zhang, Shu and Li, Shuli and Lu, Yao and Toprakci, Ozan and Xia, Xin and Chen, Chen and Hu, Yi and Zhang, Xiangwu}, year={2013}, month={Nov}, pages={560–563} } @article{liang_cheng_zhao_zhang_sun_zhou_qiu_zhang_2012, title={High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries}, volume={213}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016%2Fj.jpowsour.2013.04.019}, DOI={10.1016/j.jpowsour.2012.04.011}, abstractNote={Li2MnSiO4 has been considered as a promising cathode material with an extremely high theoretically capacity of 332 mAh g−1. However, due to its low intrinsic conductivity and poor structural stability, only about half of the theoretical capacity has been realized in practice and the capacity decays rapidly during cycling. To realize the high capacity and improve the cycling performance, Li2Mn0.8Fe0.2SiO4/carbon composite nanofibers were prepared by the combination of iron doping and electrospinning. X-ray diffraction, scanning electron microscope, and transmission electronic microscope were applied to characterize the Li2Mn0.8Fe0.2SiO4/carbon nanofibers. It was found that Li2Mn0.8Fe0.2SiO4 nanoparticles were embedded into continuous carbon nanofiber matrices, which formed free-standing porous mats that could be used as binder-free cathodes. The iron doping improved the conductivity and purity of the active material, and the carbon nanofiber matrix facilitated ion transfer and charge diffusion. As a result, Li2Mn0.8Fe0.2SiO4/carbon nanofiber cathodes showed promising improvement on reversible capacity and cycling performance.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Liang, Yinzheng and Cheng, Sichen and Zhao, Jianmeng and Zhang, Changhuan and Sun, Shiyuan and Zhou, Nanting and Qiu, Yiping and Zhang, Xiangwu}, year={2012}, month={Sep}, pages={10–15} } @article{zhang_lu_xu_li_zhang_2012, title={LiF/Fe/C nanofibres as a high-capacity cathode material for Li-ion batteries}, volume={45}, ISSN={["1361-6463"]}, url={https://publons.com/publon/7178351/}, DOI={10.1088/0022-3727/45/39/395301}, abstractNote={LiF/Fe/C composite nanofibres with different morphologies were prepared by electrospinning and heat treatment of LiF/ferrocene/polyacrylonitrile (PAN) precursors. X-ray diffraction and scanning electron microscopy were employed to study the structural variations of these composite nanofibres. It was found that Fe nanoparticles and carbon nanofibres were obtained from the thermal decomposition of ferrocene and PAN precursors, respectively. The electrochemical performance was evaluated using the prepared composite nanofibres as the cathode material in lithium half-cells. With uniformly embedded active particles in the carbon nanofibre matrix, the resultant cathode materials presented highly reversible discharge capacities of over 472 mA h g−1.}, number={39}, journal={JOURNAL OF PHYSICS D-APPLIED PHYSICS}, author={Zhang, Shu and Lu, Yao and Xu, Guanjie and Li, Ying and Zhang, Xiangwu}, year={2012}, month={Oct} }