Yuhan (Douglas) Rao Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S. M., Wang, J., Lin, C., … John, A. (2022). [Review of A review of Earth Artificial Intelligence]. COMPUTERS & GEOSCIENCES, 159. https://doi.org/10.1016/j.cageo.2022.105034 Jain, S., Mindlin, J., Koren, G., Gulizia, C., Steadman, C., Langendijk, G. S., … Rabanal, V. (2022, August). Are We at Risk of Losing the Current Generation of Climate Researchers to Data Science? AGU ADVANCES, Vol. 3. https://doi.org/10.1029/2022AV000676 Watson-Parris, D., Rao, Y., Olivie, D., Seland, O., Nowack, P., Camps-Valls, G., … Roesch, C. (2022). ClimateBench v1.0: A Benchmark for Data-Driven Climate Projections. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 14(10). https://doi.org/10.1029/2021MS002954 Hills, D. J., Damerow, J. E., Ahmmed, B., Catolico, N., Chakraborty, S., Coward, C. M., … Yao, T. (2022, April). Earth and Space Science Informatics Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. EARTH AND SPACE SCIENCE, Vol. 9. https://doi.org/10.1029/2021EA002108 Jiang, N., Shen, M., Ciais, P., Campioli, M., Penuelas, J., Korner, C., … Zhao, W. (2022, August 14). Warming does not delay the start of autumnal leaf coloration but slows its progress rate. GLOBAL ECOLOGY AND BIOGEOGRAPHY, Vol. 8. https://doi.org/10.1111/geb.13581 Wang, S., Rao, Y., Chen, J., Liu, L., & Wang, W. (2021). Adopting "Difference-in-Differences" Method to Monitor Crop Response to Agrometeorological Hazards with Satellite Data: A Case Study of Dry-Hot Wind. REMOTE SENSING, 13(3). https://doi.org/10.3390/rs13030482 Shen, M., Jiang, N., Peng, D., Rao, Y., Huang, Y., Fu, Y. H., … Tang, Y. (2020). Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? AGRICULTURAL AND FOREST METEOROLOGY, 291. https://doi.org/10.1016/j.agrformet.2020.108077 Wang, S., Chen, J., Rao, Y., Liu, L., Wang, W., & Dong, Q. (2020). Response of winter wheat to spring frost from a remote sensing perspective: Damage estimation and influential factors. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 168, 221–235. https://doi.org/10.1016/j.isprsjprs.2020.08.014 Runkle, J. D., Sugg, M. M., Leeper, R. D., Rao, Y., Matthews, J. L., & Rennie, J. J. (2020). Short-term effects of specific humidity and temperature on COVID-19 morbidity in select US cities. SCIENCE OF THE TOTAL ENVIRONMENT, 740, 140093. https://doi.org/10.1016/j.scitotenv.2020.140093 Liu, Y., Yu, Y., Yu, P., Wang, H., & Rao, Y. (2019). Enterprise LST Algorithm Development and Its Evaluation with NOAA 20 Data. Remote Sensing, 11(17), 2003. https://doi.org/10.3390/rs11172003 Li, Y., Chen, J., & Rao, Y. (2018). A practical sampling method for assessing accuracy of detected land cover/land use change: Theoretical analysis and simulation experiments. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 379–389. https://doi.org/10.1016/j.isprsjprs.2018.08.006 Rao, Y., Liang, S., & Yu, Y. (2018). Land Surface Air Temperature Data Are Considerably Different Among BEST‐LAND, CRU‐TEM4v, NASA‐GISS, and NOAA‐NCEI. Journal of Geophysical Research: Atmospheres, 123(11), 5881–5900. https://doi.org/10.1029/2018JD028355 Chen, J., Rao, Y., Shen, M., Wang, C., Zhou, Y., Ma, L., … Yang, Xi. (2016). A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3436–3449. https://doi.org/10.1109/tgrs.2016.2518167 Lu, M., Chen, J., Tang, H., Rao, Y., Yang, P., & Wu, W. (2016). Land cover change detection by integrating object-based data blending model of Landsat and MODIS. Remote Sensing of Environment, 184, 374–386. https://doi.org/10.1016/j.rse.2016.07.028 Wang, Y., Rao, Y., Wu, X., Zhao, H., & Chen, J. (2015). A method for screening climate change-sensitive infectious diseases. International Journal of Environmental Research and Public Health, 12(1), 767–783. https://doi.org/10.3390/ijerph120100767 Wang, J., Cao, X., Chen, J., Liu, D., & Rao, Y. (2015). A quantitative assessment of multiple scattering in plant-soil mixtures and the implications on nonlinear spectral unmixing models. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2015.7326129 Rao, Y., Zhu, X., Chen, J., & Wang, J. (2015). An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM+ images. Remote Sensing, 7(6), 7865–7891. https://doi.org/10.3390/rs70607865 Li, J., Rao, Y., Sun, Q., Wu, X., Jin, J., Bi, Y., … Liu, W. (2015). Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China. Scientific Reports, 5. https://doi.org/10.1038/srep18094 Wang, C., Cao, R., Chen, J., Rao, Y., & Tang, Y. (2015). Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecological Indicators, 50, 62–68. https://doi.org/10.1016/j.ecolind.2014.11.004 Chen, X., Li, W., Chen, J., Rao, Y., & Yamaguchi, Y. (2014). A combination of TsHARP and thin plate spline interpolation for spatial sharpening of thermal imagery. Remote Sensing, 6(4), 2845–2863. https://doi.org/10.3390/rs6042845 Chen, X., Li, W., Chen, J., Zhan, W., & Rao, Y. (2014). A simple error estimation method for linear-regression-based thermal sharpening techniques with the consideration of scale difference. Geo-Spatial Information Science, 17(1), 54–59. https://doi.org/10.1080/10095020.2014.889546 Fan, B., Guo, L., Li, N., Chen, J., Lin, H., Zhang, X., … Ma, L. (2014). Earlier vegetation green-up has reduced spring dust storms. Scientific Reports, 4. https://doi.org/10.1038/srep06749 Rao, Y., Chen, J., Chen, X., & Wang, J. (2013). Quantitative assessment of the different methods addressing the endmember variability. International Geoscience and Remote Sensing Symposium (IGARSS), 3317–3320. https://doi.org/10.1109/IGARSS.2013.6723537 ResearcherID. 混合像元分解技术及其进展. 遥感学报, 20(5), 1102. Retrieved from http://www.jors.cn/jrs/ch/reader/view_abstract.aspx?file_no=r16169&flag=1