@article{wang_mikaelyan_coates_lorenzen_2024, title={The Genome of Arsenophonus sp. and Its Potential Contribution in the Corn Planthopper, Peregrinus maidis}, volume={15}, ISSN={["2075-4450"]}, url={https://doi.org/10.3390/insects15020113}, DOI={10.3390/insects15020113}, abstractNote={The co-evolution between symbionts and their insect hosts has led to intricate functional interdependencies. Advances in DNA-sequencing technologies have not only reduced the cost of sequencing but, with the advent of highly accurate long-read methods, have also enabled facile genome assembly even using mixed genomic input, thereby allowing us to more easily assess the contribution of symbionts to their insect hosts. In this study, genomic data recently generated from Peregrinus maidis was used to assemble the genome of a bacterial symbiont, Pm Arsenophonus sp. This ~4.9-Mb assembly is one of the largest Arsenophonus genomes reported to date. The Benchmarking Universal Single-Copy Orthologs (BUSCO) result indicates that this Pm Arsenophonus assembly has a high degree of completeness, with 96% of the single-copy Enterobacterales orthologs found. The identity of the Pm Arsenophonus sp. was further confirmed by phylogenetic analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicates a major contribution by Pm Arsenophonus sp. to the biosynthesis of B vitamins and essential amino acids in P. maidis, where threonine and lysine production is carried out solely by Pm Arsenophonus sp. This study not only provides deeper insights into the evolutionary relationships between symbionts and their insect hosts, but also adds to our understanding of insect biology, potentially guiding the development of novel pest control methods.}, number={2}, journal={INSECTS}, author={Wang, Yu-Hui and Mikaelyan, Aram and Coates, Brad S. and Lorenzen, Marce}, year={2024}, month={Feb} } @article{coates_walden_lata_vellichirammal_mitchell_andersson_mckay_lorenzen_grubbs_wang_et al._2023, title={A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect}, volume={24}, ISSN={1471-2164}, url={http://dx.doi.org/10.1186/s12864-022-08990-y}, DOI={10.1186/s12864-022-08990-y}, abstractNote={Abstract}, number={1}, journal={BMC Genomics}, publisher={Springer Science and Business Media LLC}, author={Coates, Brad S. and Walden, Kimberly K. O. and Lata, Dimpal and Vellichirammal, Neetha Nanoth and Mitchell, Robert F. and Andersson, Martin N. and McKay, Rachel and Lorenzen, Marcé D. and Grubbs, Nathaniel and Wang, Yu-Hui and et al.}, year={2023}, month={Jan} } @article{wang_klobasa_chu_huot_whitfield_lorenzen_2023, title={Structural and functional insights into the ATP-binding cassette transporter family in the corn planthopper, Peregrinus maidis}, volume={32}, ISSN={0962-1075 1365-2583}, url={http://dx.doi.org/10.1111/imb.12840}, DOI={10.1111/imb.12840}, abstractNote={Abstract}, number={4}, journal={Insect Molecular Biology}, publisher={Wiley}, author={Wang, Yu‐Hui and Klobasa, William and Chu, Fu‐Chyun and Huot, Ordom and Whitfield, Anna E. and Lorenzen, Marcé}, year={2023}, month={Apr}, pages={412–423} } @article{oppert_muszewska_steczkiewicz_šatović-vukšić_plohl_fabrick_vinokurov_koloniuk_johnston_smith_et al._2022, title={The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success}, volume={13}, ISSN={2073-4425}, url={http://dx.doi.org/10.3390/genes13030446}, DOI={10.3390/genes13030446}, abstractNote={The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.}, number={3}, journal={Genes}, publisher={MDPI AG}, author={Oppert, Brenda and Muszewska, Anna and Steczkiewicz, Kamil and Šatović-Vukšić, Eva and Plohl, Miroslav and Fabrick, Jeffrey and Vinokurov, Konstantin and Koloniuk, Igor and Johnston, J. and Smith, Timothy and et al.}, year={2022}, month={Feb}, pages={446} }