Works (1)
Updated: July 5th, 2023 16:00
2002 journal article
Sp3 represses gene expression via the titration of promoter-specific transcription factors
JOURNAL OF BIOLOGICAL CHEMISTRY, 277(12), 9780–9789.
MeSH headings : Amino Acids / chemistry; Animals; Binding, Competitive; Cell Line; Cell Nucleus / metabolism; DNA-Binding Proteins / genetics; DNA-Binding Proteins / metabolism; Drosophila; Gene Expression; Genes, MDR / genetics; Humans; Insecta; Mutagenesis, Site-Directed; Mutation; Plasmids / metabolism; Polymerase Chain Reaction; Promoter Regions, Genetic; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Structure, Tertiary; Proto-Oncogene Proteins p21(ras) / genetics; Sequence Analysis, DNA; Sp3 Transcription Factor; Tetrahydrofolate Dehydrogenase / genetics; Time Factors; Transcription Factors / genetics; Transcription Factors / metabolism; Transcription, Genetic; Transcriptional Activation; Transfection; Tumor Cells, Cultured
TL;DR:
Biochemical and functional analyses of mutated proteins indicate that functions encoded by the M2 carboxyl terminus, such as DNA binding activity and the capacity to form multimeric complexes, are not required or sufficient for transcriptional repression.
(via Semantic Scholar)
![UN Sustainable Development Goals Color Wheel](/assets/un-sdg/SDG-Wheel_WEB-small-9baffff2694056ba5d79cdadadac07d345a206e13477bd1034bd8925f38f3c4b.png)
UN Sustainable Development Goal Categories
3. Good Health and Well-being
(Web of Science)
Source: Web Of Science
Added: August 6, 2018