2023 journal article
Structural and optical characterization of thin AlInN films on c-plane GaN substrates
JOURNAL OF APPLIED PHYSICS, 134(7).
The structure and optical characteristics of thin (∼30 nm) wurtzite AlInN films grown pseudomorphic on free-standing, c-plane GaN substrates are presented. The Al1−xInxN layers are grown by metalorganic chemical vapor deposition, resulting in films with varying In content from x = 0.142 to 0.225. They are measured using atomic force microscopy, x-ray diffraction, reciprocal space mapping, and spectroscopic ellipsometry (SE). The pseudomorphic AlInN layers provide a set where optical properties can be determined without additional variability caused by lattice relaxation, a crucial need for designing devices. They have smooth surfaces (rms < 0.29 nm) with minimum pit areas when the In content is near lattice-matched to GaN. As expected, SE shows that the refractive index increases and the bandgap energy decreases with increased In-content. Plots of bandgap energy vs In content are fitted with a single bowing parameter of 3.19 eV when using bandgap energies for AlN and InN pseudomorphic to GaN, which is lower than previous measurements and closer to theoretical predictions.