Works (27)

Updated: February 11th, 2025 00:21

2024 article

A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication

Dong, Z., Hu, G., Chen, Q., Shemyakina, E. A., Chau, G., Whipple, C. J., … Chuck, G. (2024, October 16). NATURE GENETICS, Vol. 10.

By: Z. Dong*, G. Hu*, Q. Chen n, E. Shemyakina*, G. Chau*, C. Whipple*, J. Fletcher*, G. Chuck*

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Crop Yield and Soil Fertility
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (OpenAlex)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: October 28, 2024

2024 article

Global Genotype by Environment Prediction Competition Reveals That Diverse Modeling Strategies Can Deliver Satisfactory Maize Yield Estimates

Washburn, J. D., Varela, J. I., Xavier, A., Chen, Q., Ertl, D., Gage, J. L., … Leon, N. (2024, September 20).

By: J. Washburn, J. Varela, A. Xavier, Q. Chen*, D. Ertl, J. Gage, J. Holland*, D. Lima ...

topics (OpenAlex): Genetics and Plant Breeding; Crop Yield and Soil Fertility; Genetic and phenotypic traits in livestock
Source: ORCID
Added: September 22, 2024

2024 article

Global genotype by environment prediction competition reveals that diverse modeling strategies can deliver satisfactory maize yield estimates

Washburn, J. D., Varela, J. I., Xavier, A., Chen, Q., Ertl, D., Gage, J. L., … Leon, N. (2024, December 27). (M. Sillanpää, Ed.). GENETICS, Vol. 12.

By: J. Washburn*, J. Varela*, A. Xavier*, Q. Chen n, D. Ertl, J. Gage n, J. Holland n, D. Lima* ...

Ed(s): M. Sillanpää

author keywords: genotype by environment; prediction; competition; maize; yield; phenotype
topics (OpenAlex): Genetics and Plant Breeding; Crop Yield and Soil Fertility; Genetic and phenotypic traits in livestock
Sources: ORCID, Web Of Science, NC State University Libraries
Added: November 22, 2024

2024 article

Maize smart-canopy architecture enhances yield at high densities

Tian, J., Wang, C., Chen, F., Qin, W., Yang, H., Zhao, S., … Tian, F. (2024, June 12). NATURE, Vol. 6.

By: J. Tian*, C. Wang*, F. Chen*, W. Qin*, H. Yang*, S. Zhao*, J. Xia*, X. Du* ...

topics (OpenAlex): Crop Yield and Soil Fertility
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (Web of Science)
13. Climate Action (Web of Science)
Sources: Web Of Science, NC State University Libraries
Added: August 5, 2024

2023 article

Divergent selection of KNR6 maximizes grain production by balancing the flowering-time adaptation and ear size in maize

Li, W., Jia, H., Li, M., Huang, Y., Chen, W., Yin, P., … Liu, L. (2023, April 16). PLANT BIOTECHNOLOGY JOURNAL, Vol. 21.

By: W. Li*, H. Jia*, M. Li*, Y. Huang*, W. Chen*, P. Yin*, Z. Yang*, Q. Chen n ...

Contributors: W. Li*, H. Jia*, M. Li*, Y. Huang*, W. Chen*, P. Yin*, Z. Yang*, Q. Chen n ...

author keywords: flowering time; grain yield; trade-off; divergent selection; maize
topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Plant Molecular Biology Research
Sources: ORCID, Web Of Science
Added: May 1, 2023

2023 article

Genomes to Fields 2022 Maize genotype by Environment Prediction Competition

Lima, D. C., Washburn, J. D., Varela, J. I., Chen, Q., Gage, J. L., Romay, M. C., … Leon, N. (2023, July 17). BMC RESEARCH NOTES, Vol. 16.

By: D. Lima*, J. Washburn, J. Varela*, Q. Chen n, J. Gage n, M. Romay*, J. Holland*, D. Ertl ...

Contributors: D. Lima*, J. Washburn, J. Varela*, Q. Chen n, J. Gage n, M. Romay*, J. Holland*, D. Ertl ...

author keywords: Grain yield; Maize; Root mean squared error
MeSH headings : Phenotype; Zea mays / genetics; Genotype; Genome, Plant / genetics; Edible Grain / genetics
topics (OpenAlex): Genetics and Plant Breeding; Genetic Mapping and Diversity in Plants and Animals
Sources: Web Of Science, ORCID, NC State University Libraries
Added: July 18, 2023

2021 journal article

A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication

Proceedings of the National Academy of Sciences, 118(43).

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Genetic and phenotypic traits in livestock
Source: ORCID
Added: May 1, 2024

2021 article

Domestication reshaped the genetic basis of inbreeding depression in a Maize landrace compared to its wild relative, Teosinte

Holland, J. B., Samayoa, L. F., Olukolu, B. A., Yang, C. J., Chen, Q., Stetter, M. G., … Doebley, J. F. (2021, September 2). Domestication Reshaped the Genetic Basis of Inbreeding Depression in a Maize Landrace Compared to its Wild Relative, Teosinte. BioRxiv, Vol. 9.

Contributors: L. Samayoa n, B. Olukolu*, C. Yang*, Q. Chen*, M. Stetter*, A. York*, J. Jesus Sanchez-Gonzalez*, J. Glaubitz* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetic and phenotypic traits in livestock; Genetics and Plant Breeding
Source: ORCID
Added: September 3, 2021

2021 journal article

Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte

PLOS GENETICS, 17(12).

Ed(s): B. Walsh

MeSH headings : Domestication; Genes, Plant; Genetic Variation / genetics; Inbreeding Depression / genetics; Phenotype; Plant Breeding; Plant Proteins / genetics; Quantitative Trait Loci / genetics; Selection, Genetic / genetics; Zea mays / genetics; Zea mays / growth & development
topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Genetic and phenotypic traits in livestock
TL;DR: This work compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte, and identified quantitative trait loci representing large-effect rare variants carried by only a single parent, which were more important in teOSinte than maize. (via Semantic Scholar)
Sources: ORCID, Web Of Science, NC State University Libraries
Added: February 28, 2022

2021 journal article

Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding

Molecular Plant, 14(1), 9–26.

By: Q. Chen*, W. Li*, L. Tan* & F. Tian*

Contributors: Q. Chen*, W. Li*, L. Tan* & F. Tian*

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; CRISPR and Genetic Engineering; Plant Virus Research Studies
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (OpenAlex)
Source: ORCID
Added: May 1, 2024

2021 journal article

Towards knowledge-driven breeding

Nature Plants, 7(3), 242–243.

By: Q. Chen* & F. Tian*

Contributors: Q. Chen* & F. Tian*

topics (OpenAlex): Crop Yield and Soil Fertility; Genetic Mapping and Diversity in Plants and Animals; Plant nutrient uptake and metabolism
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (OpenAlex)
Source: ORCID
Added: May 1, 2024

2020 journal article

The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication

PLOS GENETICS, 16(5).

Contributors: Q. Chen*, L. Samayoa n, C. Yang*, P. Bradbury*, B. Olukolu*, M. Neumeyer*, M. Romay*, Q. Sun* ...

Ed(s): R. Mauricio

MeSH headings : Domestication; Gene Flow; Gene Frequency; Genes, Plant; Genetic Variation; Genetics, Population; Quantitative Trait Loci; Quantitative Trait, Heritable; Selection, Genetic; Zea mays / classification; Zea mays / genetics
topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Wheat and Barley Genetics and Pathology; Genetics and Plant Breeding
TL;DR: A strongly reduced number of QTL for domestication traits in maize relative to teosinte is observed, consistent with the previously reported depletion of additive variance by selection during domestication, and genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. (via Semantic Scholar)
Sources: ORCID, Web Of Science, NC State University Libraries
Added: June 22, 2020

2019 journal article

Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte

Plant Cell, 31(9), 1990–2009.

topics (OpenAlex): Metabolomics and Mass Spectrometry Studies; Genetic Mapping and Diversity in Plants and Animals; Seed and Plant Biochemistry
Source: ORCID
Added: May 1, 2024

2019 journal article

QTL mapping for leaf morphology traits in a large maize-teosinte population

Molecular Breeding, 39(7).

Contributors: Y. Fu*, G. Xu*, H. Chen*, X. Wang*, Q. Chen*, C. Huang*, D. Li*, D. Xu* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Plant Molecular Biology Research
Source: ORCID
Added: May 1, 2024

2019 article

TeoNAM: A nested association mapping population for domestication and agronomic trait analysis in maize

BioRxiv.

By: Q. Chen*, C. Yang*, A. York*, W. Xue*, L. Daskalska*, C. DeValk*, K. Krueger*, S. Lawton* ...

Contributors: Q. Chen*, C. Yang*, A. York*, W. Xue*, L. Daskalska*, C. DeValk*, K. Krueger*, S. Lawton* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetic and phenotypic traits in livestock; Plant Molecular Biology Research
Source: ORCID
Added: May 1, 2024

2019 journal article

TeoNAM: A nested association mapping population for domestication and agronomic trait analysis in maize

Genetics, 213(3), 1065–1078.

By: Q. Chen*, C. Yang*, A. York*, W. Xue*, L. Daskalska*, C. DeValk*, K. Krueger*, S. Lawton* ...

Contributors: Q. Chen*, C. Yang*, A. York*, W. Xue*, L. Daskalska*, C. DeValk*, K. Krueger*, S. Lawton* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetic and phenotypic traits in livestock; Genetics and Plant Breeding
Source: ORCID
Added: May 1, 2024

2019 journal article

Teosinte ligule allele narrows plant architecture and enhances high-density maize yields

Science, 365(6454), 658–664.

By: J. Tian*, C. Wang*, J. Xia*, L. Wu*, G. Xu*, W. Wu*, D. Li*, W. Qin* ...

Contributors: J. Tian*, C. Wang*, J. Xia*, L. Wu*, G. Xu*, W. Wu*, D. Li*, W. Qin* ...

topics (OpenAlex): Plant Molecular Biology Research; Genetic Mapping and Diversity in Plants and Animals; Plant nutrient uptake and metabolism
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (OpenAlex)
Source: ORCID
Added: May 1, 2024

2018 journal article

Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population

Molecular Plant, 11(3), 443–459.

By: X. Wang*, Q. Chen*, Y. Wu*, Z. Lemmon*, G. Xu*, C. Huang*, Y. Liang*, D. Xu* ...

Contributors: X. Wang*, Q. Chen*, Y. Wu*, Z. Lemmon*, G. Xu*, C. Huang*, Y. Liang*, D. Xu* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Plant Disease Resistance and Genetics; Wheat and Barley Genetics and Pathology
Source: ORCID
Added: May 1, 2024

2018 journal article

Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in Maize

Plant Cell, 30(7), 1404–1423.

topics (OpenAlex): RNA Research and Splicing; RNA modifications and cancer; RNA and protein synthesis mechanisms
Source: ORCID
Added: May 1, 2024

2018 journal article

Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation

Current Biology, 28(18), 3005–3015.e4.

By: L. Guo*, X. Wang*, M. Zhao*, C. Huang*, C. Li*, D. Li*, C. Yang*, A. York* ...

Contributors: L. Guo*, X. Wang*, M. Zhao*, C. Huang*, C. Li*, D. Li*, C. Yang*, A. York* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Plant Molecular Biology Research; Genetics and Plant Breeding
Source: ORCID
Added: May 1, 2024

2017 journal article

Complex genetic architecture underlies maize tassel domestication

New Phytologist, 214(2), 852–864.

Contributors: G. Xu*, X. Wang*, C. Huang*, D. Xu*, D. Li*, J. Tian*, Q. Chen*, C. Wang* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Plant Molecular Biology Research; Genetics and Plant Breeding
Source: ORCID
Added: May 1, 2024

2017 journal article

Glossy15 Plays an Important Role in the Divergence of the Vegetative Transition between Maize and Its Progenitor, Teosinte

Molecular Plant, 10(12), 1579–1583.

By: D. Xu*, X. Wang*, C. Huang*, G. Xu*, Y. Liang*, Q. Chen*, C. Wang*, D. Li* ...

Contributors: D. Xu*, X. Wang*, C. Huang*, G. Xu*, Y. Liang*, Q. Chen*, C. Wang*, D. Li* ...

topics (OpenAlex): Plant Molecular Biology Research; Plant Stress Responses and Tolerance; Plant Reproductive Biology
Source: ORCID
Added: May 1, 2024

2017 journal article

ZmCCT9 enhances maize adaptation to higher latitudes

Proceedings of the National Academy of Sciences of the United States of America, 115(2), E334–E341.

topics (OpenAlex): Chromosomal and Genetic Variations; CRISPR and Genetic Engineering; Plant Virus Research Studies
Source: ORCID
Added: May 1, 2024

2016 journal article

Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem

Journal of Integrative Plant Biology, 58(1), 81–90.

By: C. Huang*, Q. Chen*, G. Xu*, D. Xu*, J. Tian* & F. Tian*

Contributors: C. Huang*, Q. Chen*, G. Xu*, D. Xu*, J. Tian* & F. Tian*

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Plant Molecular Biology Research
Source: ORCID
Added: May 1, 2024

2016 journal article

The genetic architecture of leaf number and its genetic relationship to flowering time in maize

New Phytologist, 210(1), 256–268.

Contributors: D. Li*, X. Wang*, X. Zhang*, Q. Chen*, G. Xu*, D. Xu*, C. Wang*, Y. Liang* ...

topics (OpenAlex): Genetic Mapping and Diversity in Plants and Animals; Genetics and Plant Breeding; Plant Molecular Biology Research
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
15. Life on Land (OpenAlex)
Source: ORCID
Added: May 1, 2024

2015 journal article

Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize

Plant Cell Reports, 34(10), 1761–1771.

By: Q. Chen*, Z. Liu*, B. Wang*, X. Wang*, J. Lai* & F. Tian*

Contributors: Q. Chen*, Z. Liu*, B. Wang*, X. Wang*, J. Lai* & F. Tian*

topics (OpenAlex): Plant nutrient uptake and metabolism; Genetic Mapping and Diversity in Plants and Animals; Plant Molecular Biology Research
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
2. Zero Hunger (OpenAlex)
Source: ORCID
Added: May 1, 2024

Employment

Updated: January 28th, 2025 11:21

2023 - present

University of Wisconsin–Madison Madison, Wisconsin, US
Researcher II Department of Plant and Agroecosystem Sciences

2023 - present

North Carolina State University Raleigh, North Carolina, US
Visiting Scholar (remote) Department of Crop and Soil Sciences

2018 - 2022

University of Wisconsin–Madison Madison, Wisconsin, US
Research Associate Department of Genetics

Education

Updated: May 23rd, 2024 16:54

2011 - 2017

China Agricultural University Beijing, CN
PhD Crop Genetics and Breeding

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2025) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.